| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlslem4.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
evlslem4.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
evlslem4.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
evlslem4.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
evlslem4.x |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑋 ∈ 𝐵 ) |
| 6 |
|
evlslem4.y |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → 𝑌 ∈ 𝐵 ) |
| 7 |
|
evlslem4.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 8 |
|
evlslem4.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) |
| 9 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → 𝑥 ∈ 𝐼 ) |
| 10 |
5
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → 𝑋 ∈ 𝐵 ) |
| 11 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) |
| 12 |
11
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
| 13 |
9 10 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
| 14 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → 𝑦 ∈ 𝐽 ) |
| 15 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) = ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) |
| 16 |
15
|
fvmpt2 |
⊢ ( ( 𝑦 ∈ 𝐽 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) = 𝑌 ) |
| 17 |
14 6 16
|
3imp3i2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) = 𝑌 ) |
| 18 |
13 17
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) = ( 𝑋 · 𝑌 ) ) |
| 19 |
18
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) ) |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑖 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) |
| 21 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) |
| 22 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) |
| 23 |
|
nfcv |
⊢ Ⅎ 𝑥 · |
| 24 |
|
nfcv |
⊢ Ⅎ 𝑥 ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) |
| 25 |
22 23 24
|
nfov |
⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑦 · |
| 28 |
|
nffvmpt1 |
⊢ Ⅎ 𝑦 ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) |
| 29 |
26 27 28
|
nfov |
⊢ Ⅎ 𝑦 ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑥 = 𝑖 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑦 = 𝑗 → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) = ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) |
| 32 |
30 31
|
oveqan12d |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 33 |
20 21 25 29 32
|
cbvmpo |
⊢ ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) = ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 34 |
|
vex |
⊢ 𝑖 ∈ V |
| 35 |
|
vex |
⊢ 𝑗 ∈ V |
| 36 |
34 35
|
eqop2 |
⊢ ( 𝑧 = 〈 𝑖 , 𝑗 〉 ↔ ( 𝑧 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑧 ) = 𝑖 ∧ ( 2nd ‘ 𝑧 ) = 𝑗 ) ) ) |
| 37 |
|
fveq2 |
⊢ ( ( 1st ‘ 𝑧 ) = 𝑖 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) = ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) ) |
| 38 |
|
fveq2 |
⊢ ( ( 2nd ‘ 𝑧 ) = 𝑗 → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) = ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) |
| 39 |
37 38
|
oveqan12d |
⊢ ( ( ( 1st ‘ 𝑧 ) = 𝑖 ∧ ( 2nd ‘ 𝑧 ) = 𝑗 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 40 |
36 39
|
simplbiim |
⊢ ( 𝑧 = 〈 𝑖 , 𝑗 〉 → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 41 |
40
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝐼 × 𝐽 ) ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) = ( 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑖 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑗 ) ) ) |
| 42 |
33 41
|
eqtr4i |
⊢ ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐼 × 𝐽 ) ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
| 43 |
19 42
|
eqtr3di |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) = ( 𝑧 ∈ ( 𝐼 × 𝐽 ) ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) ) |
| 44 |
43
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) supp 0 ) = ( ( 𝑧 ∈ ( 𝐼 × 𝐽 ) ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) supp 0 ) ) |
| 45 |
|
difxp |
⊢ ( ( 𝐼 × 𝐽 ) ∖ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) = ( ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ∪ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) |
| 46 |
45
|
eleq2i |
⊢ ( 𝑧 ∈ ( ( 𝐼 × 𝐽 ) ∖ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ↔ 𝑧 ∈ ( ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ∪ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) ) |
| 47 |
|
elun |
⊢ ( 𝑧 ∈ ( ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ∪ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) ↔ ( 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ∨ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) ) |
| 48 |
46 47
|
bitri |
⊢ ( 𝑧 ∈ ( ( 𝐼 × 𝐽 ) ∖ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ↔ ( 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ∨ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) ) |
| 49 |
|
xp1st |
⊢ ( 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) → ( 1st ‘ 𝑧 ) ∈ ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ) |
| 50 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ) |
| 51 |
|
ssidd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ⊆ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) |
| 52 |
2
|
fvexi |
⊢ 0 ∈ V |
| 53 |
52
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 54 |
50 51 7 53
|
suppssr |
⊢ ( ( 𝜑 ∧ ( 1st ‘ 𝑧 ) ∈ ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) = 0 ) |
| 55 |
49 54
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) = 0 ) |
| 56 |
55
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
| 57 |
6
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) : 𝐽 ⟶ 𝐵 ) |
| 58 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) → ( 2nd ‘ 𝑧 ) ∈ 𝐽 ) |
| 59 |
|
ffvelcdm |
⊢ ( ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) : 𝐽 ⟶ 𝐵 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝐽 ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ∈ 𝐵 ) |
| 60 |
57 58 59
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ∈ 𝐵 ) |
| 61 |
1 3 2
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ∈ 𝐵 ) → ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = 0 ) |
| 62 |
4 60 61
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ) → ( 0 · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = 0 ) |
| 63 |
56 62
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = 0 ) |
| 64 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) → ( 2nd ‘ 𝑧 ) ∈ ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| 65 |
|
ssidd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ⊆ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) |
| 66 |
57 65 8 53
|
suppssr |
⊢ ( ( 𝜑 ∧ ( 2nd ‘ 𝑧 ) ∈ ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) = 0 ) |
| 67 |
64 66
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) → ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) = 0 ) |
| 68 |
67
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · 0 ) ) |
| 69 |
|
xp1st |
⊢ ( 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) → ( 1st ‘ 𝑧 ) ∈ 𝐼 ) |
| 70 |
|
ffvelcdm |
⊢ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ∧ ( 1st ‘ 𝑧 ) ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) ∈ 𝐵 ) |
| 71 |
50 69 70
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) ∈ 𝐵 ) |
| 72 |
1 3 2
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · 0 ) = 0 ) |
| 73 |
4 71 72
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · 0 ) = 0 ) |
| 74 |
68 73
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = 0 ) |
| 75 |
63 74
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ( 𝐼 ∖ ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) ) × 𝐽 ) ∨ 𝑧 ∈ ( 𝐼 × ( 𝐽 ∖ ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = 0 ) |
| 76 |
48 75
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ( 𝐼 × 𝐽 ) ∖ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) ) → ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) = 0 ) |
| 77 |
7 8
|
xpexd |
⊢ ( 𝜑 → ( 𝐼 × 𝐽 ) ∈ V ) |
| 78 |
76 77
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝐼 × 𝐽 ) ↦ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) ‘ ( 1st ‘ 𝑧 ) ) · ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) supp 0 ) ⊆ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |
| 79 |
44 78
|
eqsstrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 ↦ ( 𝑋 · 𝑌 ) ) supp 0 ) ⊆ ( ( ( 𝑥 ∈ 𝐼 ↦ 𝑋 ) supp 0 ) × ( ( 𝑦 ∈ 𝐽 ↦ 𝑌 ) supp 0 ) ) ) |