| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlslem4.b |
|
| 2 |
|
evlslem4.z |
|
| 3 |
|
evlslem4.t |
|
| 4 |
|
evlslem4.r |
|
| 5 |
|
evlslem4.x |
|
| 6 |
|
evlslem4.y |
|
| 7 |
|
evlslem4.i |
|
| 8 |
|
evlslem4.j |
|
| 9 |
|
simp2 |
|
| 10 |
5
|
3adant3 |
|
| 11 |
|
eqid |
|
| 12 |
11
|
fvmpt2 |
|
| 13 |
9 10 12
|
syl2anc |
|
| 14 |
|
simp3 |
|
| 15 |
|
eqid |
|
| 16 |
15
|
fvmpt2 |
|
| 17 |
14 6 16
|
3imp3i2an |
|
| 18 |
13 17
|
oveq12d |
|
| 19 |
18
|
mpoeq3dva |
|
| 20 |
|
nfcv |
|
| 21 |
|
nfcv |
|
| 22 |
|
nffvmpt1 |
|
| 23 |
|
nfcv |
|
| 24 |
|
nfcv |
|
| 25 |
22 23 24
|
nfov |
|
| 26 |
|
nfcv |
|
| 27 |
|
nfcv |
|
| 28 |
|
nffvmpt1 |
|
| 29 |
26 27 28
|
nfov |
|
| 30 |
|
fveq2 |
|
| 31 |
|
fveq2 |
|
| 32 |
30 31
|
oveqan12d |
|
| 33 |
20 21 25 29 32
|
cbvmpo |
|
| 34 |
|
vex |
|
| 35 |
|
vex |
|
| 36 |
34 35
|
eqop2 |
|
| 37 |
|
fveq2 |
|
| 38 |
|
fveq2 |
|
| 39 |
37 38
|
oveqan12d |
|
| 40 |
36 39
|
simplbiim |
|
| 41 |
40
|
mpompt |
|
| 42 |
33 41
|
eqtr4i |
|
| 43 |
19 42
|
eqtr3di |
|
| 44 |
43
|
oveq1d |
|
| 45 |
|
difxp |
|
| 46 |
45
|
eleq2i |
|
| 47 |
|
elun |
|
| 48 |
46 47
|
bitri |
|
| 49 |
|
xp1st |
|
| 50 |
5
|
fmpttd |
|
| 51 |
|
ssidd |
|
| 52 |
2
|
fvexi |
|
| 53 |
52
|
a1i |
|
| 54 |
50 51 7 53
|
suppssr |
|
| 55 |
49 54
|
sylan2 |
|
| 56 |
55
|
oveq1d |
|
| 57 |
6
|
fmpttd |
|
| 58 |
|
xp2nd |
|
| 59 |
|
ffvelcdm |
|
| 60 |
57 58 59
|
syl2an |
|
| 61 |
1 3 2
|
ringlz |
|
| 62 |
4 60 61
|
syl2an2r |
|
| 63 |
56 62
|
eqtrd |
|
| 64 |
|
xp2nd |
|
| 65 |
|
ssidd |
|
| 66 |
57 65 8 53
|
suppssr |
|
| 67 |
64 66
|
sylan2 |
|
| 68 |
67
|
oveq2d |
|
| 69 |
|
xp1st |
|
| 70 |
|
ffvelcdm |
|
| 71 |
50 69 70
|
syl2an |
|
| 72 |
1 3 2
|
ringrz |
|
| 73 |
4 71 72
|
syl2an2r |
|
| 74 |
68 73
|
eqtrd |
|
| 75 |
63 74
|
jaodan |
|
| 76 |
48 75
|
sylan2b |
|
| 77 |
7 8
|
xpexd |
|
| 78 |
76 77
|
suppss2 |
|
| 79 |
44 78
|
eqsstrd |
|