Step |
Hyp |
Ref |
Expression |
1 |
|
evlscl.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝑆 ) |
2 |
|
evlscl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) |
3 |
|
evlscl.u |
⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) |
4 |
|
evlscl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
evlscl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
6 |
|
evlscl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
7 |
|
evlscl.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
8 |
|
evlscl.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
9 |
|
evlscl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
10 |
|
evlscl.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
11 |
|
eqid |
⊢ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
13 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) |
14 |
1 2 3 11 5
|
evlsrhm |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
15 |
6 7 8 14
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
16 |
4 12
|
rhmf |
⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
18 |
17 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
19 |
11 5 12 7 13 18
|
pwselbas |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
20 |
19 10
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |