| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsevl.q |
|- Q = ( ( I evalSub S ) ` R ) |
| 2 |
|
evlsevl.o |
|- O = ( I eval S ) |
| 3 |
|
evlsevl.w |
|- W = ( I mPoly U ) |
| 4 |
|
evlsevl.u |
|- U = ( S |`s R ) |
| 5 |
|
evlsevl.b |
|- B = ( Base ` W ) |
| 6 |
|
evlsevl.i |
|- ( ph -> I e. V ) |
| 7 |
|
evlsevl.s |
|- ( ph -> S e. CRing ) |
| 8 |
|
evlsevl.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
| 9 |
|
evlsevl.f |
|- ( ph -> F e. B ) |
| 10 |
|
eqid |
|- ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) |
| 11 |
|
sneq |
|- ( x = ( F ` b ) -> { x } = { ( F ` b ) } ) |
| 12 |
11
|
xpeq2d |
|- ( x = ( F ` b ) -> ( ( ( Base ` S ) ^m I ) X. { x } ) = ( ( ( Base ` S ) ^m I ) X. { ( F ` b ) } ) ) |
| 13 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 14 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 15 |
3 13 5 14 9
|
mplelf |
|- ( ph -> F : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` U ) ) |
| 16 |
15
|
ffvelcdmda |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( F ` b ) e. ( Base ` U ) ) |
| 17 |
4
|
subrgbas |
|- ( R e. ( SubRing ` S ) -> R = ( Base ` U ) ) |
| 18 |
8 17
|
syl |
|- ( ph -> R = ( Base ` U ) ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> R = ( Base ` U ) ) |
| 20 |
16 19
|
eleqtrrd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( F ` b ) e. R ) |
| 21 |
|
ovexd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( Base ` S ) ^m I ) e. _V ) |
| 22 |
|
snex |
|- { ( F ` b ) } e. _V |
| 23 |
22
|
a1i |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { ( F ` b ) } e. _V ) |
| 24 |
21 23
|
xpexd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( Base ` S ) ^m I ) X. { ( F ` b ) } ) e. _V ) |
| 25 |
10 12 20 24
|
fvmptd3 |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) = ( ( ( Base ` S ) ^m I ) X. { ( F ` b ) } ) ) |
| 26 |
|
eqid |
|- ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) = ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) |
| 27 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 28 |
27
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ ( Base ` S ) ) |
| 29 |
8 28
|
syl |
|- ( ph -> R C_ ( Base ` S ) ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> R C_ ( Base ` S ) ) |
| 31 |
30 20
|
sseldd |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( F ` b ) e. ( Base ` S ) ) |
| 32 |
26 12 31 24
|
fvmptd3 |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) = ( ( ( Base ` S ) ^m I ) X. { ( F ` b ) } ) ) |
| 33 |
25 32
|
eqtr4d |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) = ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ) |
| 34 |
33
|
oveq1d |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) = ( ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) |
| 35 |
34
|
mpteq2dva |
|- ( ph -> ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) = ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) ) |
| 36 |
35
|
oveq2d |
|- ( ph -> ( ( S ^s ( ( Base ` S ) ^m I ) ) gsum ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) ) = ( ( S ^s ( ( Base ` S ) ^m I ) ) gsum ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) ) ) |
| 37 |
|
eqid |
|- ( S ^s ( ( Base ` S ) ^m I ) ) = ( S ^s ( ( Base ` S ) ^m I ) ) |
| 38 |
|
eqid |
|- ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) = ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) |
| 39 |
|
eqid |
|- ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) = ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
| 40 |
|
eqid |
|- ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) = ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) |
| 41 |
|
eqid |
|- ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) = ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) |
| 42 |
1 3 5 14 27 4 37 38 39 40 10 41 6 7 8 9
|
evlsvval |
|- ( ph -> ( Q ` F ) = ( ( S ^s ( ( Base ` S ) ^m I ) ) gsum ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) ) ) |
| 43 |
2 27
|
evlval |
|- O = ( ( I evalSub S ) ` ( Base ` S ) ) |
| 44 |
43
|
fveq1i |
|- ( O ` F ) = ( ( ( I evalSub S ) ` ( Base ` S ) ) ` F ) |
| 45 |
|
eqid |
|- ( ( I evalSub S ) ` ( Base ` S ) ) = ( ( I evalSub S ) ` ( Base ` S ) ) |
| 46 |
|
eqid |
|- ( I mPoly ( S |`s ( Base ` S ) ) ) = ( I mPoly ( S |`s ( Base ` S ) ) ) |
| 47 |
|
eqid |
|- ( Base ` ( I mPoly ( S |`s ( Base ` S ) ) ) ) = ( Base ` ( I mPoly ( S |`s ( Base ` S ) ) ) ) |
| 48 |
|
eqid |
|- ( S |`s ( Base ` S ) ) = ( S |`s ( Base ` S ) ) |
| 49 |
7
|
crngringd |
|- ( ph -> S e. Ring ) |
| 50 |
27
|
subrgid |
|- ( S e. Ring -> ( Base ` S ) e. ( SubRing ` S ) ) |
| 51 |
49 50
|
syl |
|- ( ph -> ( Base ` S ) e. ( SubRing ` S ) ) |
| 52 |
|
eqid |
|- ( I mPoly S ) = ( I mPoly S ) |
| 53 |
|
eqid |
|- ( Base ` ( I mPoly S ) ) = ( Base ` ( I mPoly S ) ) |
| 54 |
3 4 5 52 53 6 8 9
|
mplsubrgcl |
|- ( ph -> F e. ( Base ` ( I mPoly S ) ) ) |
| 55 |
27
|
ressid |
|- ( S e. CRing -> ( S |`s ( Base ` S ) ) = S ) |
| 56 |
7 55
|
syl |
|- ( ph -> ( S |`s ( Base ` S ) ) = S ) |
| 57 |
56
|
oveq2d |
|- ( ph -> ( I mPoly ( S |`s ( Base ` S ) ) ) = ( I mPoly S ) ) |
| 58 |
57
|
fveq2d |
|- ( ph -> ( Base ` ( I mPoly ( S |`s ( Base ` S ) ) ) ) = ( Base ` ( I mPoly S ) ) ) |
| 59 |
54 58
|
eleqtrrd |
|- ( ph -> F e. ( Base ` ( I mPoly ( S |`s ( Base ` S ) ) ) ) ) |
| 60 |
45 46 47 14 27 48 37 38 39 40 26 41 6 7 51 59
|
evlsvval |
|- ( ph -> ( ( ( I evalSub S ) ` ( Base ` S ) ) ` F ) = ( ( S ^s ( ( Base ` S ) ^m I ) ) gsum ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) ) ) |
| 61 |
44 60
|
eqtrid |
|- ( ph -> ( O ` F ) = ( ( S ^s ( ( Base ` S ) ^m I ) ) gsum ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) ) ) |
| 62 |
36 42 61
|
3eqtr4d |
|- ( ph -> ( Q ` F ) = ( O ` F ) ) |