Step |
Hyp |
Ref |
Expression |
1 |
|
evlsvval.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlsvval.p |
|- P = ( I mPoly U ) |
3 |
|
evlsvval.b |
|- B = ( Base ` P ) |
4 |
|
evlsvval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
5 |
|
evlsvval.k |
|- K = ( Base ` S ) |
6 |
|
evlsvval.u |
|- U = ( S |`s R ) |
7 |
|
evlsvval.t |
|- T = ( S ^s ( K ^m I ) ) |
8 |
|
evlsvval.m |
|- M = ( mulGrp ` T ) |
9 |
|
evlsvval.w |
|- .^ = ( .g ` M ) |
10 |
|
evlsvval.x |
|- .x. = ( .r ` T ) |
11 |
|
evlsvval.f |
|- F = ( x e. R |-> ( ( K ^m I ) X. { x } ) ) |
12 |
|
evlsvval.g |
|- G = ( x e. I |-> ( a e. ( K ^m I ) |-> ( a ` x ) ) ) |
13 |
|
evlsvval.i |
|- ( ph -> I e. V ) |
14 |
|
evlsvval.s |
|- ( ph -> S e. CRing ) |
15 |
|
evlsvval.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
16 |
|
evlsvval.a |
|- ( ph -> A e. B ) |
17 |
|
fveq1 |
|- ( p = A -> ( p ` b ) = ( A ` b ) ) |
18 |
17
|
fveq2d |
|- ( p = A -> ( F ` ( p ` b ) ) = ( F ` ( A ` b ) ) ) |
19 |
18
|
oveq1d |
|- ( p = A -> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) = ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) |
20 |
19
|
mpteq2dv |
|- ( p = A -> ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) |
21 |
20
|
oveq2d |
|- ( p = A -> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) = ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |
22 |
|
eqid |
|- ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) = ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |
23 |
1 2 3 4 5 6 7 8 9 10 22 11 12 13 14 15
|
evlsval3 |
|- ( ph -> Q = ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) ) |
24 |
|
ovexd |
|- ( ph -> ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) e. _V ) |
25 |
21 23 16 24
|
fvmptd4 |
|- ( ph -> ( Q ` A ) = ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |