| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsvval.q |
|- Q = ( ( I evalSub S ) ` R ) |
| 2 |
|
evlsvval.p |
|- P = ( I mPoly U ) |
| 3 |
|
evlsvval.b |
|- B = ( Base ` P ) |
| 4 |
|
evlsvval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 5 |
|
evlsvval.k |
|- K = ( Base ` S ) |
| 6 |
|
evlsvval.u |
|- U = ( S |`s R ) |
| 7 |
|
evlsvval.t |
|- T = ( S ^s ( K ^m I ) ) |
| 8 |
|
evlsvval.m |
|- M = ( mulGrp ` T ) |
| 9 |
|
evlsvval.w |
|- .^ = ( .g ` M ) |
| 10 |
|
evlsvval.x |
|- .x. = ( .r ` T ) |
| 11 |
|
evlsvval.f |
|- F = ( x e. R |-> ( ( K ^m I ) X. { x } ) ) |
| 12 |
|
evlsvval.g |
|- G = ( x e. I |-> ( a e. ( K ^m I ) |-> ( a ` x ) ) ) |
| 13 |
|
evlsvval.i |
|- ( ph -> I e. V ) |
| 14 |
|
evlsvval.s |
|- ( ph -> S e. CRing ) |
| 15 |
|
evlsvval.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
| 16 |
|
evlsvval.a |
|- ( ph -> A e. B ) |
| 17 |
|
fveq1 |
|- ( p = A -> ( p ` b ) = ( A ` b ) ) |
| 18 |
17
|
fveq2d |
|- ( p = A -> ( F ` ( p ` b ) ) = ( F ` ( A ` b ) ) ) |
| 19 |
18
|
oveq1d |
|- ( p = A -> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) = ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) |
| 20 |
19
|
mpteq2dv |
|- ( p = A -> ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) |
| 21 |
20
|
oveq2d |
|- ( p = A -> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) = ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |
| 22 |
|
eqid |
|- ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) = ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |
| 23 |
1 2 3 4 5 6 7 8 9 10 22 11 12 13 14 15
|
evlsval3 |
|- ( ph -> Q = ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) ) |
| 24 |
|
ovexd |
|- ( ph -> ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) e. _V ) |
| 25 |
21 23 16 24
|
fvmptd4 |
|- ( ph -> ( Q ` A ) = ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |