Metamath Proof Explorer


Theorem evlsvval

Description: Give a formula for the evaluation of a polynomial. (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses evlsvval.q
|- Q = ( ( I evalSub S ) ` R )
evlsvval.p
|- P = ( I mPoly U )
evlsvval.b
|- B = ( Base ` P )
evlsvval.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
evlsvval.k
|- K = ( Base ` S )
evlsvval.u
|- U = ( S |`s R )
evlsvval.t
|- T = ( S ^s ( K ^m I ) )
evlsvval.m
|- M = ( mulGrp ` T )
evlsvval.w
|- .^ = ( .g ` M )
evlsvval.x
|- .x. = ( .r ` T )
evlsvval.f
|- F = ( x e. R |-> ( ( K ^m I ) X. { x } ) )
evlsvval.g
|- G = ( x e. I |-> ( a e. ( K ^m I ) |-> ( a ` x ) ) )
evlsvval.i
|- ( ph -> I e. V )
evlsvval.s
|- ( ph -> S e. CRing )
evlsvval.r
|- ( ph -> R e. ( SubRing ` S ) )
evlsvval.a
|- ( ph -> A e. B )
Assertion evlsvval
|- ( ph -> ( Q ` A ) = ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 evlsvval.q
 |-  Q = ( ( I evalSub S ) ` R )
2 evlsvval.p
 |-  P = ( I mPoly U )
3 evlsvval.b
 |-  B = ( Base ` P )
4 evlsvval.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
5 evlsvval.k
 |-  K = ( Base ` S )
6 evlsvval.u
 |-  U = ( S |`s R )
7 evlsvval.t
 |-  T = ( S ^s ( K ^m I ) )
8 evlsvval.m
 |-  M = ( mulGrp ` T )
9 evlsvval.w
 |-  .^ = ( .g ` M )
10 evlsvval.x
 |-  .x. = ( .r ` T )
11 evlsvval.f
 |-  F = ( x e. R |-> ( ( K ^m I ) X. { x } ) )
12 evlsvval.g
 |-  G = ( x e. I |-> ( a e. ( K ^m I ) |-> ( a ` x ) ) )
13 evlsvval.i
 |-  ( ph -> I e. V )
14 evlsvval.s
 |-  ( ph -> S e. CRing )
15 evlsvval.r
 |-  ( ph -> R e. ( SubRing ` S ) )
16 evlsvval.a
 |-  ( ph -> A e. B )
17 fveq1
 |-  ( p = A -> ( p ` b ) = ( A ` b ) )
18 17 fveq2d
 |-  ( p = A -> ( F ` ( p ` b ) ) = ( F ` ( A ` b ) ) )
19 18 oveq1d
 |-  ( p = A -> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) = ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) )
20 19 mpteq2dv
 |-  ( p = A -> ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) )
21 20 oveq2d
 |-  ( p = A -> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) = ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) )
22 eqid
 |-  ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) = ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) )
23 1 2 3 4 5 6 7 8 9 10 22 11 12 13 14 15 evlsval3
 |-  ( ph -> Q = ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) )
24 ovexd
 |-  ( ph -> ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) e. _V )
25 21 23 16 24 fvmptd4
 |-  ( ph -> ( Q ` A ) = ( T gsum ( b e. D |-> ( ( F ` ( A ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) )