Metamath Proof Explorer


Theorem evlsvval

Description: Give a formula for the evaluation of a polynomial. (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses evlsvval.q Q=IevalSubSR
evlsvval.p P=ImPolyU
evlsvval.b B=BaseP
evlsvval.d D=h0I|h-1Fin
evlsvval.k K=BaseS
evlsvval.u U=S𝑠R
evlsvval.t T=S𝑠KI
evlsvval.m M=mulGrpT
evlsvval.w ×˙=M
evlsvval.x ·˙=T
evlsvval.f F=xRKI×x
evlsvval.g G=xIaKIax
evlsvval.i φIV
evlsvval.s φSCRing
evlsvval.r φRSubRingS
evlsvval.a φAB
Assertion evlsvval φQA=TbDFAb·˙Mb×˙fG

Proof

Step Hyp Ref Expression
1 evlsvval.q Q=IevalSubSR
2 evlsvval.p P=ImPolyU
3 evlsvval.b B=BaseP
4 evlsvval.d D=h0I|h-1Fin
5 evlsvval.k K=BaseS
6 evlsvval.u U=S𝑠R
7 evlsvval.t T=S𝑠KI
8 evlsvval.m M=mulGrpT
9 evlsvval.w ×˙=M
10 evlsvval.x ·˙=T
11 evlsvval.f F=xRKI×x
12 evlsvval.g G=xIaKIax
13 evlsvval.i φIV
14 evlsvval.s φSCRing
15 evlsvval.r φRSubRingS
16 evlsvval.a φAB
17 fveq1 p=Apb=Ab
18 17 fveq2d p=AFpb=FAb
19 18 oveq1d p=AFpb·˙Mb×˙fG=FAb·˙Mb×˙fG
20 19 mpteq2dv p=AbDFpb·˙Mb×˙fG=bDFAb·˙Mb×˙fG
21 20 oveq2d p=ATbDFpb·˙Mb×˙fG=TbDFAb·˙Mb×˙fG
22 eqid pBTbDFpb·˙Mb×˙fG=pBTbDFpb·˙Mb×˙fG
23 1 2 3 4 5 6 7 8 9 10 22 11 12 13 14 15 evlsval3 φQ=pBTbDFpb·˙Mb×˙fG
24 ovexd φTbDFAb·˙Mb×˙fGV
25 21 23 16 24 fvmptd4 φQA=TbDFAb·˙Mb×˙fG