| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsevl.q |
|
| 2 |
|
evlsevl.o |
|
| 3 |
|
evlsevl.w |
|
| 4 |
|
evlsevl.u |
|
| 5 |
|
evlsevl.b |
|
| 6 |
|
evlsevl.i |
|
| 7 |
|
evlsevl.s |
|
| 8 |
|
evlsevl.r |
|
| 9 |
|
evlsevl.f |
|
| 10 |
|
eqid |
|
| 11 |
|
sneq |
|
| 12 |
11
|
xpeq2d |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
3 13 5 14 9
|
mplelf |
|
| 16 |
15
|
ffvelcdmda |
|
| 17 |
4
|
subrgbas |
|
| 18 |
8 17
|
syl |
|
| 19 |
18
|
adantr |
|
| 20 |
16 19
|
eleqtrrd |
|
| 21 |
|
ovexd |
|
| 22 |
|
snex |
|
| 23 |
22
|
a1i |
|
| 24 |
21 23
|
xpexd |
|
| 25 |
10 12 20 24
|
fvmptd3 |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
27
|
subrgss |
|
| 29 |
8 28
|
syl |
|
| 30 |
29
|
adantr |
|
| 31 |
30 20
|
sseldd |
|
| 32 |
26 12 31 24
|
fvmptd3 |
|
| 33 |
25 32
|
eqtr4d |
|
| 34 |
33
|
oveq1d |
|
| 35 |
34
|
mpteq2dva |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
1 3 5 14 27 4 37 38 39 40 10 41 6 7 8 9
|
evlsvval |
|
| 43 |
2 27
|
evlval |
|
| 44 |
43
|
fveq1i |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
7
|
crngringd |
|
| 50 |
27
|
subrgid |
|
| 51 |
49 50
|
syl |
|
| 52 |
|
eqid |
|
| 53 |
|
eqid |
|
| 54 |
3 4 5 52 53 6 8 9
|
mplsubrgcl |
|
| 55 |
27
|
ressid |
|
| 56 |
7 55
|
syl |
|
| 57 |
56
|
oveq2d |
|
| 58 |
57
|
fveq2d |
|
| 59 |
54 58
|
eleqtrrd |
|
| 60 |
45 46 47 14 27 48 37 38 39 40 26 41 6 7 51 59
|
evlsvval |
|
| 61 |
44 60
|
eqtrid |
|
| 62 |
36 42 61
|
3eqtr4d |
|