Step |
Hyp |
Ref |
Expression |
1 |
|
evlsevl.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsevl.o |
⊢ 𝑂 = ( 𝐼 eval 𝑆 ) |
3 |
|
evlsevl.w |
⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) |
4 |
|
evlsevl.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
evlsevl.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
6 |
|
evlsevl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
7 |
|
evlsevl.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
8 |
|
evlsevl.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
9 |
|
evlsevl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) |
11 |
|
sneq |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑏 ) → { 𝑥 } = { ( 𝐹 ‘ 𝑏 ) } ) |
12 |
11
|
xpeq2d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑏 ) → ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) = ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
14 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
15 |
3 13 5 14 9
|
mplelf |
⊢ ( 𝜑 → 𝐹 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
16 |
15
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ 𝑏 ) ∈ ( Base ‘ 𝑈 ) ) |
17 |
4
|
subrgbas |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
18 |
8 17
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
20 |
16 19
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑅 ) |
21 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ∈ V ) |
22 |
|
snex |
⊢ { ( 𝐹 ‘ 𝑏 ) } ∈ V |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → { ( 𝐹 ‘ 𝑏 ) } ∈ V ) |
24 |
21 23
|
xpexd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ∈ V ) |
25 |
10 12 20 24
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) = ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ) |
26 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
28 |
27
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ ( Base ‘ 𝑆 ) ) |
29 |
8 28
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ ( Base ‘ 𝑆 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑅 ⊆ ( Base ‘ 𝑆 ) ) |
31 |
30 20
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ 𝑏 ) ∈ ( Base ‘ 𝑆 ) ) |
32 |
26 12 31 24
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) = ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ) |
33 |
25 32
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ) |
34 |
33
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) = ( ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) |
35 |
34
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) = ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) = ( ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) ) |
37 |
|
eqid |
⊢ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) = ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) |
38 |
|
eqid |
⊢ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) = ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) |
39 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) |
40 |
|
eqid |
⊢ ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) = ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) |
41 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) |
42 |
1 3 5 14 27 4 37 38 39 40 10 41 6 7 8 9
|
evlsvval |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) ) |
43 |
2 27
|
evlval |
⊢ 𝑂 = ( ( 𝐼 evalSub 𝑆 ) ‘ ( Base ‘ 𝑆 ) ) |
44 |
43
|
fveq1i |
⊢ ( 𝑂 ‘ 𝐹 ) = ( ( ( 𝐼 evalSub 𝑆 ) ‘ ( Base ‘ 𝑆 ) ) ‘ 𝐹 ) |
45 |
|
eqid |
⊢ ( ( 𝐼 evalSub 𝑆 ) ‘ ( Base ‘ 𝑆 ) ) = ( ( 𝐼 evalSub 𝑆 ) ‘ ( Base ‘ 𝑆 ) ) |
46 |
|
eqid |
⊢ ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) = ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) |
47 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) ) |
48 |
|
eqid |
⊢ ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) |
49 |
7
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
50 |
27
|
subrgid |
⊢ ( 𝑆 ∈ Ring → ( Base ‘ 𝑆 ) ∈ ( SubRing ‘ 𝑆 ) ) |
51 |
49 50
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) ∈ ( SubRing ‘ 𝑆 ) ) |
52 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑆 ) = ( 𝐼 mPoly 𝑆 ) |
53 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) |
54 |
3 4 5 52 53 6 8 9
|
mplsubrgcl |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
55 |
27
|
ressid |
⊢ ( 𝑆 ∈ CRing → ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = 𝑆 ) |
56 |
7 55
|
syl |
⊢ ( 𝜑 → ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) = 𝑆 ) |
57 |
56
|
oveq2d |
⊢ ( 𝜑 → ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) = ( 𝐼 mPoly 𝑆 ) ) |
58 |
57
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) ) = ( Base ‘ ( 𝐼 mPoly 𝑆 ) ) ) |
59 |
54 58
|
eleqtrrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑆 ↾s ( Base ‘ 𝑆 ) ) ) ) ) |
60 |
45 46 47 14 27 48 37 38 39 40 26 41 6 7 51 59
|
evlsvval |
⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑆 ) ‘ ( Base ‘ 𝑆 ) ) ‘ 𝐹 ) = ( ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) ) |
61 |
44 60
|
eqtrid |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐹 ) = ( ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) Σg ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) ) |
62 |
36 42 61
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( 𝑂 ‘ 𝐹 ) ) |