Step |
Hyp |
Ref |
Expression |
1 |
|
evlcl.q |
⊢ 𝑄 = ( 𝐼 eval 𝑅 ) |
2 |
|
evlcl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
evlcl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
evlcl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
5 |
|
evlcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
evlcl.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
7 |
|
evlcl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
8 |
|
evlcl.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
9 |
|
eqid |
⊢ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
11 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) |
12 |
1 4 2 9
|
evlrhm |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
13 |
5 6 12
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
14 |
3 10
|
rhmf |
⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
16 |
15 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
17 |
9 4 10 6 11 16
|
pwselbas |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
18 |
17 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |