Metamath Proof Explorer


Theorem evlcl

Description: A polynomial over the ring R evaluates to an element in R . (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses evlcl.q 𝑄 = ( 𝐼 eval 𝑅 )
evlcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
evlcl.b 𝐵 = ( Base ‘ 𝑃 )
evlcl.k 𝐾 = ( Base ‘ 𝑅 )
evlcl.i ( 𝜑𝐼𝑉 )
evlcl.r ( 𝜑𝑅 ∈ CRing )
evlcl.f ( 𝜑𝐹𝐵 )
evlcl.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
Assertion evlcl ( 𝜑 → ( ( 𝑄𝐹 ) ‘ 𝐴 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 evlcl.q 𝑄 = ( 𝐼 eval 𝑅 )
2 evlcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 evlcl.b 𝐵 = ( Base ‘ 𝑃 )
4 evlcl.k 𝐾 = ( Base ‘ 𝑅 )
5 evlcl.i ( 𝜑𝐼𝑉 )
6 evlcl.r ( 𝜑𝑅 ∈ CRing )
7 evlcl.f ( 𝜑𝐹𝐵 )
8 evlcl.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
9 eqid ( 𝑅s ( 𝐾m 𝐼 ) ) = ( 𝑅s ( 𝐾m 𝐼 ) )
10 eqid ( Base ‘ ( 𝑅s ( 𝐾m 𝐼 ) ) ) = ( Base ‘ ( 𝑅s ( 𝐾m 𝐼 ) ) )
11 ovexd ( 𝜑 → ( 𝐾m 𝐼 ) ∈ V )
12 1 4 2 9 evlrhm ( ( 𝐼𝑉𝑅 ∈ CRing ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑅s ( 𝐾m 𝐼 ) ) ) )
13 5 6 12 syl2anc ( 𝜑𝑄 ∈ ( 𝑃 RingHom ( 𝑅s ( 𝐾m 𝐼 ) ) ) )
14 3 10 rhmf ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑅s ( 𝐾m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑅s ( 𝐾m 𝐼 ) ) ) )
15 13 14 syl ( 𝜑𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑅s ( 𝐾m 𝐼 ) ) ) )
16 15 7 ffvelcdmd ( 𝜑 → ( 𝑄𝐹 ) ∈ ( Base ‘ ( 𝑅s ( 𝐾m 𝐼 ) ) ) )
17 9 4 10 6 11 16 pwselbas ( 𝜑 → ( 𝑄𝐹 ) : ( 𝐾m 𝐼 ) ⟶ 𝐾 )
18 17 8 ffvelcdmd ( 𝜑 → ( ( 𝑄𝐹 ) ‘ 𝐴 ) ∈ 𝐾 )