| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlcl.q |
|- Q = ( I eval R ) |
| 2 |
|
evlcl.p |
|- P = ( I mPoly R ) |
| 3 |
|
evlcl.b |
|- B = ( Base ` P ) |
| 4 |
|
evlcl.k |
|- K = ( Base ` R ) |
| 5 |
|
evlcl.i |
|- ( ph -> I e. V ) |
| 6 |
|
evlcl.r |
|- ( ph -> R e. CRing ) |
| 7 |
|
evlcl.f |
|- ( ph -> F e. B ) |
| 8 |
|
evlcl.a |
|- ( ph -> A e. ( K ^m I ) ) |
| 9 |
|
eqid |
|- ( R ^s ( K ^m I ) ) = ( R ^s ( K ^m I ) ) |
| 10 |
|
eqid |
|- ( Base ` ( R ^s ( K ^m I ) ) ) = ( Base ` ( R ^s ( K ^m I ) ) ) |
| 11 |
|
ovexd |
|- ( ph -> ( K ^m I ) e. _V ) |
| 12 |
1 4 2 9
|
evlrhm |
|- ( ( I e. V /\ R e. CRing ) -> Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) ) |
| 13 |
5 6 12
|
syl2anc |
|- ( ph -> Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) ) |
| 14 |
3 10
|
rhmf |
|- ( Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( R ^s ( K ^m I ) ) ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> Q : B --> ( Base ` ( R ^s ( K ^m I ) ) ) ) |
| 16 |
15 7
|
ffvelcdmd |
|- ( ph -> ( Q ` F ) e. ( Base ` ( R ^s ( K ^m I ) ) ) ) |
| 17 |
9 4 10 6 11 16
|
pwselbas |
|- ( ph -> ( Q ` F ) : ( K ^m I ) --> K ) |
| 18 |
17 8
|
ffvelcdmd |
|- ( ph -> ( ( Q ` F ) ` A ) e. K ) |