Metamath Proof Explorer


Theorem evlsmaprhm

Description: The function F mapping polynomials p to their subring evaluation at a given point X is a ring homomorphism. Compare evls1maprhm . (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses evlsmaprhm.q Q=IevalSubRS
evlsmaprhm.p P=ImPolyU
evlsmaprhm.u U=R𝑠S
evlsmaprhm.b B=BaseP
evlsmaprhm.k K=BaseR
evlsmaprhm.f F=pBQpA
evlsmaprhm.i φIV
evlsmaprhm.r φRCRing
evlsmaprhm.s φSSubRingR
evlsmaprhm.a φAKI
Assertion evlsmaprhm φFPRingHomR

Proof

Step Hyp Ref Expression
1 evlsmaprhm.q Q=IevalSubRS
2 evlsmaprhm.p P=ImPolyU
3 evlsmaprhm.u U=R𝑠S
4 evlsmaprhm.b B=BaseP
5 evlsmaprhm.k K=BaseR
6 evlsmaprhm.f F=pBQpA
7 evlsmaprhm.i φIV
8 evlsmaprhm.r φRCRing
9 evlsmaprhm.s φSSubRingR
10 evlsmaprhm.a φAKI
11 eqid 1P=1P
12 eqid 1R=1R
13 eqid P=P
14 eqid R=R
15 3 subrgring SSubRingRURing
16 9 15 syl φURing
17 2 7 16 mplringd φPRing
18 8 crngringd φRRing
19 fveq2 p=1PQp=Q1P
20 19 fveq1d p=1PQpA=Q1PA
21 4 11 ringidcl PRing1PB
22 17 21 syl φ1PB
23 fvexd φQ1PAV
24 6 20 22 23 fvmptd3 φF1P=Q1PA
25 eqid algScP=algScP
26 eqid 1U=1U
27 2 25 26 11 7 16 mplascl1 φalgScP1U=1P
28 27 eqcomd φ1P=algScP1U
29 28 fveq2d φQ1P=QalgScP1U
30 29 fveq1d φQ1PA=QalgScP1UA
31 3 12 subrg1 SSubRingR1R=1U
32 9 31 syl φ1R=1U
33 12 subrg1cl SSubRingR1RS
34 9 33 syl φ1RS
35 32 34 eqeltrrd φ1US
36 1 2 3 5 4 25 7 8 9 35 10 evlsscaval φalgScP1UBQalgScP1UA=1U
37 36 simprd φQalgScP1UA=1U
38 37 32 eqtr4d φQalgScP1UA=1R
39 24 30 38 3eqtrd φF1P=1R
40 7 adantr φqBrBIV
41 8 adantr φqBrBRCRing
42 9 adantr φqBrBSSubRingR
43 10 adantr φqBrBAKI
44 simprl φqBrBqB
45 eqidd φqBrBQqA=QqA
46 44 45 jca φqBrBqBQqA=QqA
47 simprr φqBrBrB
48 eqidd φqBrBQrA=QrA
49 47 48 jca φqBrBrBQrA=QrA
50 1 2 3 5 4 40 41 42 43 46 49 13 14 evlsmulval φqBrBqPrBQqPrA=QqARQrA
51 50 simprd φqBrBQqPrA=QqARQrA
52 fveq2 p=qPrQp=QqPr
53 52 fveq1d p=qPrQpA=QqPrA
54 17 adantr φqBrBPRing
55 4 13 54 44 47 ringcld φqBrBqPrB
56 fvexd φqBrBQqPrAV
57 6 53 55 56 fvmptd3 φqBrBFqPr=QqPrA
58 fveq2 p=qQp=Qq
59 58 fveq1d p=qQpA=QqA
60 fvexd φqBrBQqAV
61 6 59 44 60 fvmptd3 φqBrBFq=QqA
62 fveq2 p=rQp=Qr
63 62 fveq1d p=rQpA=QrA
64 fvexd φqBrBQrAV
65 6 63 47 64 fvmptd3 φqBrBFr=QrA
66 61 65 oveq12d φqBrBFqRFr=QqARQrA
67 51 57 66 3eqtr4d φqBrBFqPr=FqRFr
68 eqid +P=+P
69 eqid +R=+R
70 7 adantr φpBIV
71 8 adantr φpBRCRing
72 9 adantr φpBSSubRingR
73 simpr φpBpB
74 10 adantr φpBAKI
75 1 2 3 4 5 70 71 72 73 74 evlscl φpBQpAK
76 75 6 fmptd φF:BK
77 1 2 3 5 4 40 41 42 43 46 49 68 69 evlsaddval φqBrBq+PrBQq+PrA=QqA+RQrA
78 77 simprd φqBrBQq+PrA=QqA+RQrA
79 fveq2 p=q+PrQp=Qq+Pr
80 79 fveq1d p=q+PrQpA=Qq+PrA
81 17 ringgrpd φPGrp
82 81 adantr φqBrBPGrp
83 4 68 82 44 47 grpcld φqBrBq+PrB
84 fvexd φqBrBQq+PrAV
85 6 80 83 84 fvmptd3 φqBrBFq+Pr=Qq+PrA
86 61 65 oveq12d φqBrBFq+RFr=QqA+RQrA
87 78 85 86 3eqtr4d φqBrBFq+Pr=Fq+RFr
88 4 11 12 13 14 17 18 39 67 5 68 69 76 87 isrhmd φFPRingHomR