| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsmaprhm.q |
|
| 2 |
|
evlsmaprhm.p |
|
| 3 |
|
evlsmaprhm.u |
|
| 4 |
|
evlsmaprhm.b |
|
| 5 |
|
evlsmaprhm.k |
|
| 6 |
|
evlsmaprhm.f |
|
| 7 |
|
evlsmaprhm.i |
|
| 8 |
|
evlsmaprhm.r |
|
| 9 |
|
evlsmaprhm.s |
|
| 10 |
|
evlsmaprhm.a |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
3
|
subrgring |
|
| 16 |
9 15
|
syl |
|
| 17 |
2 7 16
|
mplringd |
|
| 18 |
8
|
crngringd |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
fveq1d |
|
| 21 |
4 11
|
ringidcl |
|
| 22 |
17 21
|
syl |
|
| 23 |
|
fvexd |
|
| 24 |
6 20 22 23
|
fvmptd3 |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
2 25 26 11 7 16
|
mplascl1 |
|
| 28 |
27
|
eqcomd |
|
| 29 |
28
|
fveq2d |
|
| 30 |
29
|
fveq1d |
|
| 31 |
3 12
|
subrg1 |
|
| 32 |
9 31
|
syl |
|
| 33 |
12
|
subrg1cl |
|
| 34 |
9 33
|
syl |
|
| 35 |
32 34
|
eqeltrrd |
|
| 36 |
1 2 3 5 4 25 7 8 9 35 10
|
evlsscaval |
|
| 37 |
36
|
simprd |
|
| 38 |
37 32
|
eqtr4d |
|
| 39 |
24 30 38
|
3eqtrd |
|
| 40 |
7
|
adantr |
|
| 41 |
8
|
adantr |
|
| 42 |
9
|
adantr |
|
| 43 |
10
|
adantr |
|
| 44 |
|
simprl |
|
| 45 |
|
eqidd |
|
| 46 |
44 45
|
jca |
|
| 47 |
|
simprr |
|
| 48 |
|
eqidd |
|
| 49 |
47 48
|
jca |
|
| 50 |
1 2 3 5 4 40 41 42 43 46 49 13 14
|
evlsmulval |
|
| 51 |
50
|
simprd |
|
| 52 |
|
fveq2 |
|
| 53 |
52
|
fveq1d |
|
| 54 |
17
|
adantr |
|
| 55 |
4 13 54 44 47
|
ringcld |
|
| 56 |
|
fvexd |
|
| 57 |
6 53 55 56
|
fvmptd3 |
|
| 58 |
|
fveq2 |
|
| 59 |
58
|
fveq1d |
|
| 60 |
|
fvexd |
|
| 61 |
6 59 44 60
|
fvmptd3 |
|
| 62 |
|
fveq2 |
|
| 63 |
62
|
fveq1d |
|
| 64 |
|
fvexd |
|
| 65 |
6 63 47 64
|
fvmptd3 |
|
| 66 |
61 65
|
oveq12d |
|
| 67 |
51 57 66
|
3eqtr4d |
|
| 68 |
|
eqid |
|
| 69 |
|
eqid |
|
| 70 |
7
|
adantr |
|
| 71 |
8
|
adantr |
|
| 72 |
9
|
adantr |
|
| 73 |
|
simpr |
|
| 74 |
10
|
adantr |
|
| 75 |
1 2 3 4 5 70 71 72 73 74
|
evlscl |
|
| 76 |
75 6
|
fmptd |
|
| 77 |
1 2 3 5 4 40 41 42 43 46 49 68 69
|
evlsaddval |
|
| 78 |
77
|
simprd |
|
| 79 |
|
fveq2 |
|
| 80 |
79
|
fveq1d |
|
| 81 |
17
|
ringgrpd |
|
| 82 |
81
|
adantr |
|
| 83 |
4 68 82 44 47
|
grpcld |
|
| 84 |
|
fvexd |
|
| 85 |
6 80 83 84
|
fvmptd3 |
|
| 86 |
61 65
|
oveq12d |
|
| 87 |
78 85 86
|
3eqtr4d |
|
| 88 |
4 11 12 13 14 17 18 39 67 5 68 69 76 87
|
isrhmd |
|