| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsmaprhm.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑅 ) ‘ 𝑆 ) |
| 2 |
|
evlsmaprhm.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) |
| 3 |
|
evlsmaprhm.u |
⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) |
| 4 |
|
evlsmaprhm.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 5 |
|
evlsmaprhm.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 6 |
|
evlsmaprhm.f |
⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) ) |
| 7 |
|
evlsmaprhm.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 8 |
|
evlsmaprhm.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 9 |
|
evlsmaprhm.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 10 |
|
evlsmaprhm.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 11 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 12 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 14 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 15 |
3
|
subrgring |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑈 ∈ Ring ) |
| 16 |
9 15
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 17 |
2 7 16
|
mplringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 18 |
8
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 19 |
|
fveq2 |
⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( 𝑄 ‘ 𝑝 ) = ( 𝑄 ‘ ( 1r ‘ 𝑃 ) ) ) |
| 20 |
19
|
fveq1d |
⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐴 ) ) |
| 21 |
4 11
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ 𝐵 ) |
| 22 |
17 21
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ 𝐵 ) |
| 23 |
|
fvexd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐴 ) ∈ V ) |
| 24 |
6 20 22 23
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( ( 𝑄 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐴 ) ) |
| 25 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 26 |
|
eqid |
⊢ ( 1r ‘ 𝑈 ) = ( 1r ‘ 𝑈 ) |
| 27 |
2 25 26 11 7 16
|
mplascl1 |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) = ( 1r ‘ 𝑃 ) ) |
| 28 |
27
|
eqcomd |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ) |
| 29 |
28
|
fveq2d |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 1r ‘ 𝑃 ) ) = ( 𝑄 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ) ) |
| 30 |
29
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) |
| 31 |
3 12
|
subrg1 |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑈 ) ) |
| 32 |
9 31
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑈 ) ) |
| 33 |
12
|
subrg1cl |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 34 |
9 33
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 35 |
32 34
|
eqeltrrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑈 ) ∈ 𝑆 ) |
| 36 |
1 2 3 5 4 25 7 8 9 35 10
|
evlsscaval |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ) ‘ 𝐴 ) = ( 1r ‘ 𝑈 ) ) ) |
| 37 |
36
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ) ‘ 𝐴 ) = ( 1r ‘ 𝑈 ) ) |
| 38 |
37 32
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑈 ) ) ) ‘ 𝐴 ) = ( 1r ‘ 𝑅 ) ) |
| 39 |
24 30 38
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑅 ) ) |
| 40 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑉 ) |
| 41 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑅 ∈ CRing ) |
| 42 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 43 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 44 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑞 ∈ 𝐵 ) |
| 45 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ) |
| 46 |
44 45
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ) ) |
| 47 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑟 ∈ 𝐵 ) |
| 48 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) |
| 49 |
47 48
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑟 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) |
| 50 |
1 2 3 5 4 40 41 42 43 46 49 13 14
|
evlsmulval |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) ) |
| 51 |
50
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) |
| 52 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) → ( 𝑄 ‘ 𝑝 ) = ( 𝑄 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ) |
| 53 |
52
|
fveq1d |
⊢ ( 𝑝 = ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) → ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) ) |
| 54 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑃 ∈ Ring ) |
| 55 |
4 13 54 44 47
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ∈ 𝐵 ) |
| 56 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) ∈ V ) |
| 57 |
6 53 55 56
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑄 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝑝 = 𝑞 → ( 𝑄 ‘ 𝑝 ) = ( 𝑄 ‘ 𝑞 ) ) |
| 59 |
58
|
fveq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ) |
| 60 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ∈ V ) |
| 61 |
6 59 44 60
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑞 ) = ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑝 = 𝑟 → ( 𝑄 ‘ 𝑝 ) = ( 𝑄 ‘ 𝑟 ) ) |
| 63 |
62
|
fveq1d |
⊢ ( 𝑝 = 𝑟 → ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) |
| 64 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ∈ V ) |
| 65 |
6 63 47 64
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑟 ) = ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) |
| 66 |
61 65
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) = ( ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) |
| 67 |
51 57 66
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑞 ( .r ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) ) |
| 68 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 69 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 70 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) |
| 71 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑅 ∈ CRing ) |
| 72 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 73 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) |
| 74 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 75 |
1 2 3 4 5 70 71 72 73 74
|
evlscl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 76 |
75 6
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐾 ) |
| 77 |
1 2 3 5 4 40 41 42 43 46 49 68 69
|
evlsaddval |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ( +g ‘ 𝑅 ) ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) ) |
| 78 |
77
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ( +g ‘ 𝑅 ) ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) |
| 79 |
|
fveq2 |
⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( 𝑄 ‘ 𝑝 ) = ( 𝑄 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ) |
| 80 |
79
|
fveq1d |
⊢ ( 𝑝 = ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) → ( ( 𝑄 ‘ 𝑝 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) ) |
| 81 |
17
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → 𝑃 ∈ Grp ) |
| 83 |
4 68 82 44 47
|
grpcld |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ∈ 𝐵 ) |
| 84 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝑄 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) ∈ V ) |
| 85 |
6 80 83 84
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝑄 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) ‘ 𝐴 ) ) |
| 86 |
61 65
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) = ( ( ( 𝑄 ‘ 𝑞 ) ‘ 𝐴 ) ( +g ‘ 𝑅 ) ( ( 𝑄 ‘ 𝑟 ) ‘ 𝐴 ) ) ) |
| 87 |
78 85 86
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ 𝑅 ) ( 𝐹 ‘ 𝑟 ) ) ) |
| 88 |
4 11 12 13 14 17 18 39 67 5 68 69 76 87
|
isrhmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) ) |