| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppind.b |
|
| 2 |
|
fsuppind.z |
|
| 3 |
|
fsuppind.p |
|
| 4 |
|
fsuppind.g |
|
| 5 |
|
fsuppind.v |
|
| 6 |
|
fsuppind.0 |
|
| 7 |
|
fsuppind.1 |
|
| 8 |
|
fsuppind.2 |
|
| 9 |
1
|
fvexi |
|
| 10 |
9
|
a1i |
|
| 11 |
10 5
|
elmapd |
|
| 12 |
11
|
adantr |
|
| 13 |
|
eqeq1 |
|
| 14 |
13
|
imbi1d |
|
| 15 |
14
|
ralbidv |
|
| 16 |
|
eqeq1 |
|
| 17 |
16
|
imbi1d |
|
| 18 |
17
|
ralbidv |
|
| 19 |
|
eqeq1 |
|
| 20 |
19
|
imbi1d |
|
| 21 |
20
|
ralbidv |
|
| 22 |
|
eqeq1 |
|
| 23 |
22
|
imbi1d |
|
| 24 |
23
|
ralbidv |
|
| 25 |
|
eqcom |
|
| 26 |
|
ovex |
|
| 27 |
|
euhash1 |
|
| 28 |
26 27
|
ax-mp |
|
| 29 |
25 28
|
bitri |
|
| 30 |
|
elmapfn |
|
| 31 |
30
|
adantl |
|
| 32 |
5
|
adantr |
|
| 33 |
2
|
fvexi |
|
| 34 |
33
|
a1i |
|
| 35 |
|
elsuppfn |
|
| 36 |
31 32 34 35
|
syl3anc |
|
| 37 |
36
|
eubidv |
|
| 38 |
|
df-reu |
|
| 39 |
37 38
|
bitr4di |
|
| 40 |
30
|
ad2antlr |
|
| 41 |
|
fvex |
|
| 42 |
41 33
|
ifex |
|
| 43 |
|
eqid |
|
| 44 |
42 43
|
fnmpti |
|
| 45 |
44
|
a1i |
|
| 46 |
|
eqeq1 |
|
| 47 |
|
fveq2 |
|
| 48 |
46 47
|
ifbieq1d |
|
| 49 |
48 43 42
|
fvmpt3i |
|
| 50 |
49
|
adantl |
|
| 51 |
|
eqidd |
|
| 52 |
|
simpr |
|
| 53 |
|
simplr |
|
| 54 |
|
fveq2 |
|
| 55 |
54
|
neeq1d |
|
| 56 |
55
|
riota2 |
|
| 57 |
52 53 56
|
syl2anc |
|
| 58 |
|
necom |
|
| 59 |
|
eqcom |
|
| 60 |
57 58 59
|
3bitr4g |
|
| 61 |
60
|
biimpd |
|
| 62 |
61
|
necon1bd |
|
| 63 |
62
|
imp |
|
| 64 |
51 63
|
ifeqda |
|
| 65 |
50 64
|
eqtr2d |
|
| 66 |
40 45 65
|
eqfnfvd |
|
| 67 |
|
riotacl |
|
| 68 |
67
|
adantl |
|
| 69 |
|
elmapi |
|
| 70 |
69
|
ad2antlr |
|
| 71 |
70 68
|
ffvelcdmd |
|
| 72 |
7
|
ralrimivva |
|
| 73 |
72
|
ad2antrr |
|
| 74 |
|
eqeq2 |
|
| 75 |
74
|
ifbid |
|
| 76 |
75
|
mpteq2dv |
|
| 77 |
76
|
eleq1d |
|
| 78 |
|
fveq2 |
|
| 79 |
78
|
eqeq2d |
|
| 80 |
79
|
biimparc |
|
| 81 |
80
|
ifeq1da |
|
| 82 |
81
|
mpteq2dv |
|
| 83 |
82
|
eleq1d |
|
| 84 |
77 83
|
rspc2va |
|
| 85 |
68 71 73 84
|
syl21anc |
|
| 86 |
66 85
|
eqeltrd |
|
| 87 |
86
|
ex |
|
| 88 |
39 87
|
sylbid |
|
| 89 |
29 88
|
biimtrid |
|
| 90 |
89
|
ralrimiva |
|
| 91 |
|
fvoveq1 |
|
| 92 |
91
|
eqeq2d |
|
| 93 |
|
oveq1 |
|
| 94 |
93
|
eqeq2d |
|
| 95 |
92 94
|
anbi12d |
|
| 96 |
1 2
|
grpidcl |
|
| 97 |
4 96
|
syl |
|
| 98 |
97
|
ad5antr |
|
| 99 |
|
eqid |
|
| 100 |
|
simprl |
|
| 101 |
100
|
ad2antrr |
|
| 102 |
|
simpr |
|
| 103 |
99 101 102
|
mapfvd |
|
| 104 |
98 103
|
ifcld |
|
| 105 |
104
|
fmpttd |
|
| 106 |
9
|
a1i |
|
| 107 |
5
|
ad4antr |
|
| 108 |
106 107
|
elmapd |
|
| 109 |
105 108
|
mpbird |
|
| 110 |
109
|
adantrl |
|
| 111 |
|
ovexd |
|
| 112 |
|
simprl |
|
| 113 |
|
simprr |
|
| 114 |
|
elmapfn |
|
| 115 |
114
|
ad2antrl |
|
| 116 |
115
|
adantr |
|
| 117 |
5
|
ad3antrrr |
|
| 118 |
33
|
a1i |
|
| 119 |
|
elsuppfn |
|
| 120 |
116 117 118 119
|
syl3anc |
|
| 121 |
112 113 120
|
mpbir2and |
|
| 122 |
|
simpllr |
|
| 123 |
122
|
nnnn0d |
|
| 124 |
|
simplrr |
|
| 125 |
124
|
eqcomd |
|
| 126 |
|
hashdifsnp1 |
|
| 127 |
126
|
imp |
|
| 128 |
111 121 123 125 127
|
syl31anc |
|
| 129 |
|
eldifsn |
|
| 130 |
|
fvex |
|
| 131 |
33 130
|
ifex |
|
| 132 |
|
eqid |
|
| 133 |
131 132
|
fnmpti |
|
| 134 |
133
|
a1i |
|
| 135 |
5
|
ad3antrrr |
|
| 136 |
33
|
a1i |
|
| 137 |
|
elsuppfn |
|
| 138 |
134 135 136 137
|
syl3anc |
|
| 139 |
|
iftrue |
|
| 140 |
|
olc |
|
| 141 |
139 140
|
2thd |
|
| 142 |
|
iffalse |
|
| 143 |
142
|
eqeq1d |
|
| 144 |
|
biorf |
|
| 145 |
|
orcom |
|
| 146 |
144 145
|
bitr4di |
|
| 147 |
143 146
|
bitrd |
|
| 148 |
141 147
|
pm2.61i |
|
| 149 |
148
|
a1i |
|
| 150 |
149
|
necon3abid |
|
| 151 |
|
neanior |
|
| 152 |
150 151
|
bitr4di |
|
| 153 |
152
|
anbi2d |
|
| 154 |
|
anass |
|
| 155 |
153 154
|
bitr4di |
|
| 156 |
|
equequ1 |
|
| 157 |
|
fveq2 |
|
| 158 |
156 157
|
ifbieq2d |
|
| 159 |
158 132 131
|
fvmpt3i |
|
| 160 |
159
|
adantl |
|
| 161 |
160
|
neeq1d |
|
| 162 |
161
|
pm5.32da |
|
| 163 |
115
|
adantr |
|
| 164 |
|
elsuppfn |
|
| 165 |
163 135 136 164
|
syl3anc |
|
| 166 |
165
|
anbi1d |
|
| 167 |
155 162 166
|
3bitr4d |
|
| 168 |
138 167
|
bitr2d |
|
| 169 |
129 168
|
bitrid |
|
| 170 |
169
|
eqrdv |
|
| 171 |
170
|
fveq2d |
|
| 172 |
171
|
adantrl |
|
| 173 |
128 172
|
eqtr3d |
|
| 174 |
130 33
|
ifex |
|
| 175 |
|
eqid |
|
| 176 |
174 175
|
fnmpti |
|
| 177 |
176
|
a1i |
|
| 178 |
|
inidm |
|
| 179 |
134 177 135 135 178
|
offn |
|
| 180 |
156 157
|
ifbieq1d |
|
| 181 |
180 175 174
|
fvmpt3i |
|
| 182 |
181
|
adantl |
|
| 183 |
134 177 135 135 178 160 182
|
ofval |
|
| 184 |
4
|
ad4antr |
|
| 185 |
|
simplrl |
|
| 186 |
185
|
anassrs |
|
| 187 |
|
simpr |
|
| 188 |
99 186 187
|
mapfvd |
|
| 189 |
1 3 2
|
grplid |
|
| 190 |
1 3 2
|
grprid |
|
| 191 |
189 190
|
ifeq12d |
|
| 192 |
184 188 191
|
syl2anc |
|
| 193 |
|
ovif12 |
|
| 194 |
|
ifid |
|
| 195 |
194
|
eqcomi |
|
| 196 |
192 193 195
|
3eqtr4g |
|
| 197 |
183 196
|
eqtr2d |
|
| 198 |
163 179 197
|
eqfnfvd |
|
| 199 |
198
|
adantrl |
|
| 200 |
173 199
|
jca |
|
| 201 |
200
|
adantllr |
|
| 202 |
95 110 201
|
rspcedvdw |
|
| 203 |
114
|
ad2antrl |
|
| 204 |
5
|
ad3antrrr |
|
| 205 |
33
|
a1i |
|
| 206 |
|
suppvalfn |
|
| 207 |
203 204 205 206
|
syl3anc |
|
| 208 |
|
simprr |
|
| 209 |
|
peano2nn |
|
| 210 |
209
|
ad3antlr |
|
| 211 |
210
|
nnne0d |
|
| 212 |
208 211
|
eqnetrrd |
|
| 213 |
|
ovex |
|
| 214 |
|
hasheq0 |
|
| 215 |
214
|
necon3bid |
|
| 216 |
213 215
|
mp1i |
|
| 217 |
212 216
|
mpbid |
|
| 218 |
207 217
|
eqnetrrd |
|
| 219 |
|
rabn0 |
|
| 220 |
218 219
|
sylib |
|
| 221 |
202 220
|
reximddv |
|
| 222 |
|
rexcom |
|
| 223 |
221 222
|
sylib |
|
| 224 |
|
simprr |
|
| 225 |
|
fvoveq1 |
|
| 226 |
225
|
eqeq2d |
|
| 227 |
|
eleq1w |
|
| 228 |
226 227
|
imbi12d |
|
| 229 |
228
|
rspccva |
|
| 230 |
229
|
adantll |
|
| 231 |
230
|
imp |
|
| 232 |
231
|
adantllr |
|
| 233 |
232
|
adantlrr |
|
| 234 |
233
|
adantrr |
|
| 235 |
|
simplrr |
|
| 236 |
100
|
ad2antrr |
|
| 237 |
99 236 235
|
mapfvd |
|
| 238 |
72
|
ad5antr |
|
| 239 |
|
equequ2 |
|
| 240 |
239
|
ifbid |
|
| 241 |
240
|
mpteq2dv |
|
| 242 |
241
|
eleq1d |
|
| 243 |
|
fveq2 |
|
| 244 |
243
|
eqeq2d |
|
| 245 |
244
|
biimparc |
|
| 246 |
245
|
ifeq1da |
|
| 247 |
246
|
mpteq2dv |
|
| 248 |
247
|
eleq1d |
|
| 249 |
242 248
|
rspc2va |
|
| 250 |
235 237 238 249
|
syl21anc |
|
| 251 |
8
|
ralrimivva |
|
| 252 |
251
|
ad5antr |
|
| 253 |
|
ovrspc2v |
|
| 254 |
234 250 252 253
|
syl21anc |
|
| 255 |
224 254
|
eqeltrd |
|
| 256 |
255
|
ex |
|
| 257 |
256
|
rexlimdvva |
|
| 258 |
223 257
|
mpd |
|
| 259 |
258
|
exp32 |
|
| 260 |
259
|
ralrimiv |
|
| 261 |
|
fvoveq1 |
|
| 262 |
261
|
eqeq2d |
|
| 263 |
|
eleq1w |
|
| 264 |
262 263
|
imbi12d |
|
| 265 |
264
|
cbvralvw |
|
| 266 |
260 265
|
sylib |
|
| 267 |
15 18 21 24 90 266
|
nnindd |
|
| 268 |
267
|
ralrimiva |
|
| 269 |
|
ralcom |
|
| 270 |
268 269
|
sylib |
|
| 271 |
|
biidd |
|
| 272 |
271
|
ceqsralv |
|
| 273 |
272
|
biimpcd |
|
| 274 |
273
|
ralimi |
|
| 275 |
270 274
|
syl |
|
| 276 |
|
fvoveq1 |
|
| 277 |
276
|
eleq1d |
|
| 278 |
|
eleq1 |
|
| 279 |
277 278
|
imbi12d |
|
| 280 |
279
|
rspcv |
|
| 281 |
275 280
|
syl5com |
|
| 282 |
281
|
com23 |
|
| 283 |
282
|
imp |
|
| 284 |
12 283
|
sylbird |
|
| 285 |
284
|
imp |
|
| 286 |
285
|
an32s |
|
| 287 |
286
|
adantlr |
|
| 288 |
|
ovex |
|
| 289 |
|
hasheq0 |
|
| 290 |
288 289
|
ax-mp |
|
| 291 |
|
ffn |
|
| 292 |
291
|
ad2antlr |
|
| 293 |
5
|
ad2antrr |
|
| 294 |
33
|
a1i |
|
| 295 |
|
fnsuppeq0 |
|
| 296 |
292 293 294 295
|
syl3anc |
|
| 297 |
296
|
biimpa |
|
| 298 |
6
|
ad3antrrr |
|
| 299 |
297 298
|
eqeltrd |
|
| 300 |
290 299
|
sylan2b |
|
| 301 |
|
simpr |
|
| 302 |
301
|
fsuppimpd |
|
| 303 |
|
hashcl |
|
| 304 |
302 303
|
syl |
|
| 305 |
|
elnn0 |
|
| 306 |
304 305
|
sylib |
|
| 307 |
287 300 306
|
mpjaodan |
|
| 308 |
307
|
anasss |
|