Metamath Proof Explorer


Theorem fsuppssindlem1

Description: Lemma for fsuppssind . Functions are zero outside of their support. (Contributed by SN, 15-Jul-2024)

Ref Expression
Hypotheses fsuppssindlem1.z φ0˙W
fsuppssindlem1.v φIV
fsuppssindlem1.1 φF:IB
fsuppssindlem1.2 φFsupp0˙S
Assertion fsuppssindlem1 φF=xIifxSFSx0˙

Proof

Step Hyp Ref Expression
1 fsuppssindlem1.z φ0˙W
2 fsuppssindlem1.v φIV
3 fsuppssindlem1.1 φF:IB
4 fsuppssindlem1.2 φFsupp0˙S
5 3 feqmptd φF=xIFx
6 fvres xSFSx=Fx
7 6 adantl φxIxSFSx=Fx
8 eldif xISxI¬xS
9 3 4 2 1 suppssr φxISFx=0˙
10 9 eqcomd φxIS0˙=Fx
11 8 10 sylan2br φxI¬xS0˙=Fx
12 11 anassrs φxI¬xS0˙=Fx
13 7 12 ifeqda φxIifxSFSx0˙=Fx
14 13 mpteq2dva φxIifxSFSx0˙=xIFx
15 5 14 eqtr4d φF=xIifxSFSx0˙