Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppssindlem1.z |
|- ( ph -> .0. e. W ) |
2 |
|
fsuppssindlem1.v |
|- ( ph -> I e. V ) |
3 |
|
fsuppssindlem1.1 |
|- ( ph -> F : I --> B ) |
4 |
|
fsuppssindlem1.2 |
|- ( ph -> ( F supp .0. ) C_ S ) |
5 |
3
|
feqmptd |
|- ( ph -> F = ( x e. I |-> ( F ` x ) ) ) |
6 |
|
fvres |
|- ( x e. S -> ( ( F |` S ) ` x ) = ( F ` x ) ) |
7 |
6
|
adantl |
|- ( ( ( ph /\ x e. I ) /\ x e. S ) -> ( ( F |` S ) ` x ) = ( F ` x ) ) |
8 |
|
eldif |
|- ( x e. ( I \ S ) <-> ( x e. I /\ -. x e. S ) ) |
9 |
3 4 2 1
|
suppssr |
|- ( ( ph /\ x e. ( I \ S ) ) -> ( F ` x ) = .0. ) |
10 |
9
|
eqcomd |
|- ( ( ph /\ x e. ( I \ S ) ) -> .0. = ( F ` x ) ) |
11 |
8 10
|
sylan2br |
|- ( ( ph /\ ( x e. I /\ -. x e. S ) ) -> .0. = ( F ` x ) ) |
12 |
11
|
anassrs |
|- ( ( ( ph /\ x e. I ) /\ -. x e. S ) -> .0. = ( F ` x ) ) |
13 |
7 12
|
ifeqda |
|- ( ( ph /\ x e. I ) -> if ( x e. S , ( ( F |` S ) ` x ) , .0. ) = ( F ` x ) ) |
14 |
13
|
mpteq2dva |
|- ( ph -> ( x e. I |-> if ( x e. S , ( ( F |` S ) ` x ) , .0. ) ) = ( x e. I |-> ( F ` x ) ) ) |
15 |
5 14
|
eqtr4d |
|- ( ph -> F = ( x e. I |-> if ( x e. S , ( ( F |` S ) ` x ) , .0. ) ) ) |