Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppssindlem1.z |
⊢ ( 𝜑 → 0 ∈ 𝑊 ) |
2 |
|
fsuppssindlem1.v |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
fsuppssindlem1.1 |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) |
4 |
|
fsuppssindlem1.2 |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝑆 ) |
5 |
3
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
6 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑆 → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
8 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ 𝑆 ) ↔ ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝑆 ) ) |
9 |
3 4 2 1
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑆 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
10 |
9
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ 𝑆 ) ) → 0 = ( 𝐹 ‘ 𝑥 ) ) |
11 |
8 10
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝑆 ) ) → 0 = ( 𝐹 ‘ 𝑥 ) ) |
12 |
11
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ ¬ 𝑥 ∈ 𝑆 ) → 0 = ( 𝐹 ‘ 𝑥 ) ) |
13 |
7 12
|
ifeqda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → if ( 𝑥 ∈ 𝑆 , ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑥 ) , 0 ) = ( 𝐹 ‘ 𝑥 ) ) |
14 |
13
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
15 |
5 14
|
eqtr4d |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑥 ) , 0 ) ) ) |