Metamath Proof Explorer


Theorem fsuppssindlem1

Description: Lemma for fsuppssind . Functions are zero outside of their support. (Contributed by SN, 15-Jul-2024)

Ref Expression
Hypotheses fsuppssindlem1.z ( 𝜑0𝑊 )
fsuppssindlem1.v ( 𝜑𝐼𝑉 )
fsuppssindlem1.1 ( 𝜑𝐹 : 𝐼𝐵 )
fsuppssindlem1.2 ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝑆 )
Assertion fsuppssindlem1 ( 𝜑𝐹 = ( 𝑥𝐼 ↦ if ( 𝑥𝑆 , ( ( 𝐹𝑆 ) ‘ 𝑥 ) , 0 ) ) )

Proof

Step Hyp Ref Expression
1 fsuppssindlem1.z ( 𝜑0𝑊 )
2 fsuppssindlem1.v ( 𝜑𝐼𝑉 )
3 fsuppssindlem1.1 ( 𝜑𝐹 : 𝐼𝐵 )
4 fsuppssindlem1.2 ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝑆 )
5 3 feqmptd ( 𝜑𝐹 = ( 𝑥𝐼 ↦ ( 𝐹𝑥 ) ) )
6 fvres ( 𝑥𝑆 → ( ( 𝐹𝑆 ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
7 6 adantl ( ( ( 𝜑𝑥𝐼 ) ∧ 𝑥𝑆 ) → ( ( 𝐹𝑆 ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
8 eldif ( 𝑥 ∈ ( 𝐼𝑆 ) ↔ ( 𝑥𝐼 ∧ ¬ 𝑥𝑆 ) )
9 3 4 2 1 suppssr ( ( 𝜑𝑥 ∈ ( 𝐼𝑆 ) ) → ( 𝐹𝑥 ) = 0 )
10 9 eqcomd ( ( 𝜑𝑥 ∈ ( 𝐼𝑆 ) ) → 0 = ( 𝐹𝑥 ) )
11 8 10 sylan2br ( ( 𝜑 ∧ ( 𝑥𝐼 ∧ ¬ 𝑥𝑆 ) ) → 0 = ( 𝐹𝑥 ) )
12 11 anassrs ( ( ( 𝜑𝑥𝐼 ) ∧ ¬ 𝑥𝑆 ) → 0 = ( 𝐹𝑥 ) )
13 7 12 ifeqda ( ( 𝜑𝑥𝐼 ) → if ( 𝑥𝑆 , ( ( 𝐹𝑆 ) ‘ 𝑥 ) , 0 ) = ( 𝐹𝑥 ) )
14 13 mpteq2dva ( 𝜑 → ( 𝑥𝐼 ↦ if ( 𝑥𝑆 , ( ( 𝐹𝑆 ) ‘ 𝑥 ) , 0 ) ) = ( 𝑥𝐼 ↦ ( 𝐹𝑥 ) ) )
15 5 14 eqtr4d ( 𝜑𝐹 = ( 𝑥𝐼 ↦ if ( 𝑥𝑆 , ( ( 𝐹𝑆 ) ‘ 𝑥 ) , 0 ) ) )