Step |
Hyp |
Ref |
Expression |
1 |
|
fsuppssindlem2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
2 |
|
fsuppssindlem2.v |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
3 |
|
fsuppssindlem2.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐼 ) |
4 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
5 |
4
|
ifeq1d |
⊢ ( 𝑓 = 𝐹 → if ( 𝑥 ∈ 𝑆 , ( 𝑓 ‘ 𝑥 ) , 0 ) = if ( 𝑥 ∈ 𝑆 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) |
6 |
5
|
mpteq2dv |
⊢ ( 𝑓 = 𝐹 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ↔ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) ) |
8 |
7
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∣ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 } ↔ ( 𝐹 ∈ ( 𝐵 ↑m 𝑆 ) ∧ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) ) |
9 |
2 3
|
ssexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
10 |
1 9
|
elmapd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐵 ↑m 𝑆 ) ↔ 𝐹 : 𝑆 ⟶ 𝐵 ) ) |
11 |
10
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝐵 ↑m 𝑆 ) ∧ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) ↔ ( 𝐹 : 𝑆 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) ) ) |
12 |
|
partfun |
⊢ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( ( 𝑥 ∈ ( 𝐼 ∩ 𝑆 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∪ ( 𝑥 ∈ ( 𝐼 ∖ 𝑆 ) ↦ 0 ) ) |
13 |
|
sseqin2 |
⊢ ( 𝑆 ⊆ 𝐼 ↔ ( 𝐼 ∩ 𝑆 ) = 𝑆 ) |
14 |
3 13
|
sylib |
⊢ ( 𝜑 → ( 𝐼 ∩ 𝑆 ) = 𝑆 ) |
15 |
14
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐼 ∩ 𝑆 ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑆 ⟶ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ∩ 𝑆 ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑆 ⟶ 𝐵 ) → 𝐹 : 𝑆 ⟶ 𝐵 ) |
18 |
17
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑆 ⟶ 𝐵 ) → 𝐹 = ( 𝑥 ∈ 𝑆 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
19 |
16 18
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑆 ⟶ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ∩ 𝑆 ) ↦ ( 𝐹 ‘ 𝑥 ) ) = 𝐹 ) |
20 |
|
fconstmpt |
⊢ ( ( 𝐼 ∖ 𝑆 ) × { 0 } ) = ( 𝑥 ∈ ( 𝐼 ∖ 𝑆 ) ↦ 0 ) |
21 |
20
|
eqcomi |
⊢ ( 𝑥 ∈ ( 𝐼 ∖ 𝑆 ) ↦ 0 ) = ( ( 𝐼 ∖ 𝑆 ) × { 0 } ) |
22 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑆 ⟶ 𝐵 ) → ( 𝑥 ∈ ( 𝐼 ∖ 𝑆 ) ↦ 0 ) = ( ( 𝐼 ∖ 𝑆 ) × { 0 } ) ) |
23 |
19 22
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑆 ⟶ 𝐵 ) → ( ( 𝑥 ∈ ( 𝐼 ∩ 𝑆 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∪ ( 𝑥 ∈ ( 𝐼 ∖ 𝑆 ) ↦ 0 ) ) = ( 𝐹 ∪ ( ( 𝐼 ∖ 𝑆 ) × { 0 } ) ) ) |
24 |
12 23
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑆 ⟶ 𝐵 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) = ( 𝐹 ∪ ( ( 𝐼 ∖ 𝑆 ) × { 0 } ) ) ) |
25 |
24
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑆 ⟶ 𝐵 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ↔ ( 𝐹 ∪ ( ( 𝐼 ∖ 𝑆 ) × { 0 } ) ) ∈ 𝐻 ) ) |
26 |
25
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝐹 : 𝑆 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) ↔ ( 𝐹 : 𝑆 ⟶ 𝐵 ∧ ( 𝐹 ∪ ( ( 𝐼 ∖ 𝑆 ) × { 0 } ) ) ∈ 𝐻 ) ) ) |
27 |
11 26
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝐵 ↑m 𝑆 ) ∧ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝐹 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) ↔ ( 𝐹 : 𝑆 ⟶ 𝐵 ∧ ( 𝐹 ∪ ( ( 𝐼 ∖ 𝑆 ) × { 0 } ) ) ∈ 𝐻 ) ) ) |
28 |
8 27
|
syl5bb |
⊢ ( 𝜑 → ( 𝐹 ∈ { 𝑓 ∈ ( 𝐵 ↑m 𝑆 ) ∣ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 ∈ 𝑆 , ( 𝑓 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 } ↔ ( 𝐹 : 𝑆 ⟶ 𝐵 ∧ ( 𝐹 ∪ ( ( 𝐼 ∖ 𝑆 ) × { 0 } ) ) ∈ 𝐻 ) ) ) |