Metamath Proof Explorer


Theorem hashdifsnp1

Description: If the size of a set is a nonnegative integer increased by 1, the size of the set with one of its elements removed is this nonnegative integer. (Contributed by Alexander van der Vekens, 7-Jan-2018)

Ref Expression
Assertion hashdifsnp1 VWNVY0V=Y+1VN=Y

Proof

Step Hyp Ref Expression
1 peano2nn0 Y0Y+10
2 eleq1a Y+10V=Y+1V0
3 2 adantr Y+10VWV=Y+1V0
4 3 imp Y+10VWV=Y+1V0
5 hashclb VWVFinV0
6 5 ad2antlr Y+10VWV=Y+1VFinV0
7 4 6 mpbird Y+10VWV=Y+1VFin
8 7 ex Y+10VWV=Y+1VFin
9 8 ex Y+10VWV=Y+1VFin
10 1 9 syl Y0VWV=Y+1VFin
11 10 impcom VWY0V=Y+1VFin
12 11 3adant2 VWNVY0V=Y+1VFin
13 12 imp VWNVY0V=Y+1VFin
14 snssi NVNV
15 14 3ad2ant2 VWNVY0NV
16 15 adantr VWNVY0V=Y+1NV
17 hashssdif VFinNVVN=VN
18 13 16 17 syl2anc VWNVY0V=Y+1VN=VN
19 oveq1 V=Y+1VN=Y+1-N
20 hashsng NVN=1
21 20 oveq2d NVY+1-N=Y+1-1
22 21 3ad2ant2 VWNVY0Y+1-N=Y+1-1
23 nn0cn Y0Y
24 1cnd Y01
25 23 24 pncand Y0Y+1-1=Y
26 25 3ad2ant3 VWNVY0Y+1-1=Y
27 22 26 eqtrd VWNVY0Y+1-N=Y
28 19 27 sylan9eqr VWNVY0V=Y+1VN=Y
29 18 28 eqtrd VWNVY0V=Y+1VN=Y
30 29 ex VWNVY0V=Y+1VN=Y