| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fi1uzind.f |
|
| 2 |
|
fi1uzind.l |
|
| 3 |
|
fi1uzind.1 |
|
| 4 |
|
fi1uzind.2 |
|
| 5 |
|
fi1uzind.3 |
|
| 6 |
|
fi1uzind.4 |
|
| 7 |
|
fi1uzind.base |
|
| 8 |
|
fi1uzind.step |
|
| 9 |
|
dfclel |
|
| 10 |
|
nn0z |
|
| 11 |
2 10
|
mp1i |
|
| 12 |
|
nn0z |
|
| 13 |
12
|
ad2antlr |
|
| 14 |
|
breq2 |
|
| 15 |
14
|
eqcoms |
|
| 16 |
15
|
biimpcd |
|
| 17 |
16
|
adantr |
|
| 18 |
17
|
imp |
|
| 19 |
|
eqeq1 |
|
| 20 |
19
|
anbi2d |
|
| 21 |
20
|
imbi1d |
|
| 22 |
21
|
2albidv |
|
| 23 |
|
eqeq1 |
|
| 24 |
23
|
anbi2d |
|
| 25 |
24
|
imbi1d |
|
| 26 |
25
|
2albidv |
|
| 27 |
|
eqeq1 |
|
| 28 |
27
|
anbi2d |
|
| 29 |
28
|
imbi1d |
|
| 30 |
29
|
2albidv |
|
| 31 |
|
eqeq1 |
|
| 32 |
31
|
anbi2d |
|
| 33 |
32
|
imbi1d |
|
| 34 |
33
|
2albidv |
|
| 35 |
|
eqcom |
|
| 36 |
35 7
|
sylan2b |
|
| 37 |
36
|
gen2 |
|
| 38 |
37
|
a1i |
|
| 39 |
|
simpl |
|
| 40 |
|
simpr |
|
| 41 |
40
|
sbceq1d |
|
| 42 |
39 41
|
sbceqbid |
|
| 43 |
|
fveq2 |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
44
|
adantr |
|
| 46 |
42 45
|
anbi12d |
|
| 47 |
46 4
|
imbi12d |
|
| 48 |
47
|
cbval2vw |
|
| 49 |
|
nn0ge0 |
|
| 50 |
|
0red |
|
| 51 |
|
nn0re |
|
| 52 |
2 51
|
mp1i |
|
| 53 |
|
zre |
|
| 54 |
|
letr |
|
| 55 |
50 52 53 54
|
syl3anc |
|
| 56 |
|
0nn0 |
|
| 57 |
|
pm3.22 |
|
| 58 |
|
0z |
|
| 59 |
|
eluz1 |
|
| 60 |
58 59
|
mp1i |
|
| 61 |
57 60
|
mpbird |
|
| 62 |
|
eluznn0 |
|
| 63 |
56 61 62
|
sylancr |
|
| 64 |
63
|
ex |
|
| 65 |
55 64
|
syl6com |
|
| 66 |
65
|
ex |
|
| 67 |
66
|
com14 |
|
| 68 |
67
|
pm2.43a |
|
| 69 |
68
|
imp |
|
| 70 |
69
|
com12 |
|
| 71 |
2 49 70
|
mp2b |
|
| 72 |
71
|
3adant1 |
|
| 73 |
|
eqcom |
|
| 74 |
|
nn0p1gt0 |
|
| 75 |
74
|
adantr |
|
| 76 |
|
simpr |
|
| 77 |
75 76
|
breqtrrd |
|
| 78 |
73 77
|
sylan2b |
|
| 79 |
78
|
adantrl |
|
| 80 |
|
hashgt0elex |
|
| 81 |
|
vex |
|
| 82 |
81
|
a1i |
|
| 83 |
|
simpr |
|
| 84 |
|
simpl |
|
| 85 |
|
hashdifsnp1 |
|
| 86 |
73 85
|
biimtrid |
|
| 87 |
82 83 84 86
|
syl3anc |
|
| 88 |
87
|
imp |
|
| 89 |
|
peano2nn0 |
|
| 90 |
89
|
ad2antrr |
|
| 91 |
90
|
ad2antlr |
|
| 92 |
|
simpr |
|
| 93 |
|
simplrr |
|
| 94 |
|
simprlr |
|
| 95 |
94
|
adantr |
|
| 96 |
92 93 95
|
3jca |
|
| 97 |
91 96
|
jca |
|
| 98 |
81
|
difexi |
|
| 99 |
|
simpl |
|
| 100 |
|
simpr |
|
| 101 |
100
|
sbceq1d |
|
| 102 |
99 101
|
sbceqbid |
|
| 103 |
|
eqcom |
|
| 104 |
|
fveqeq2 |
|
| 105 |
103 104
|
bitrid |
|
| 106 |
105
|
adantr |
|
| 107 |
102 106
|
anbi12d |
|
| 108 |
107 6
|
imbi12d |
|
| 109 |
108
|
spc2gv |
|
| 110 |
98 1 109
|
mp2an |
|
| 111 |
110
|
expdimp |
|
| 112 |
111
|
ad2antrr |
|
| 113 |
73
|
3anbi2i |
|
| 114 |
113
|
anbi2i |
|
| 115 |
114 8
|
sylanb |
|
| 116 |
97 112 115
|
syl6an |
|
| 117 |
116
|
exp41 |
|
| 118 |
117
|
com15 |
|
| 119 |
118
|
com23 |
|
| 120 |
88 119
|
mpcom |
|
| 121 |
120
|
ex |
|
| 122 |
121
|
com23 |
|
| 123 |
122
|
ex |
|
| 124 |
123
|
com15 |
|
| 125 |
124
|
imp |
|
| 126 |
5 125
|
mpd |
|
| 127 |
126
|
ex |
|
| 128 |
127
|
com4l |
|
| 129 |
128
|
exlimiv |
|
| 130 |
80 129
|
syl |
|
| 131 |
130
|
ex |
|
| 132 |
131
|
com25 |
|
| 133 |
132
|
elv |
|
| 134 |
133
|
imp |
|
| 135 |
134
|
impcom |
|
| 136 |
79 135
|
mpd |
|
| 137 |
72 136
|
sylan |
|
| 138 |
137
|
impancom |
|
| 139 |
138
|
alrimivv |
|
| 140 |
139
|
ex |
|
| 141 |
48 140
|
biimtrid |
|
| 142 |
22 26 30 34 38 141
|
uzind |
|
| 143 |
11 13 18 142
|
syl3anc |
|
| 144 |
|
sbcex |
|
| 145 |
|
sbccom |
|
| 146 |
|
sbcex |
|
| 147 |
145 146
|
sylbi |
|
| 148 |
144 147
|
jca |
|
| 149 |
|
simpl |
|
| 150 |
|
simpr |
|
| 151 |
150
|
sbceq1d |
|
| 152 |
149 151
|
sbceqbid |
|
| 153 |
|
fveq2 |
|
| 154 |
153
|
eqeq2d |
|
| 155 |
154
|
adantr |
|
| 156 |
152 155
|
anbi12d |
|
| 157 |
156 3
|
imbi12d |
|
| 158 |
157
|
spc2gv |
|
| 159 |
158
|
com23 |
|
| 160 |
159
|
expd |
|
| 161 |
148 160
|
mpcom |
|
| 162 |
161
|
imp |
|
| 163 |
143 162
|
syl5com |
|
| 164 |
163
|
exp31 |
|
| 165 |
164
|
com14 |
|
| 166 |
165
|
expcom |
|
| 167 |
166
|
com24 |
|
| 168 |
167
|
pm2.43i |
|
| 169 |
168
|
imp |
|
| 170 |
169
|
exlimiv |
|
| 171 |
9 170
|
sylbi |
|
| 172 |
|
hashcl |
|
| 173 |
171 172
|
syl11 |
|
| 174 |
173
|
3imp |
|