Metamath Proof Explorer


Theorem fi1uzind

Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as orderd pairs of vertices and edges) with a finite number of vertices, usually with L = 0 (see opfi1ind ) or L = 1 . (Contributed by AV, 22-Oct-2020) (Revised by AV, 28-Mar-2021)

Ref Expression
Hypotheses fi1uzind.f FV
fi1uzind.l L0
fi1uzind.1 v=Ve=Eψφ
fi1uzind.2 v=we=fψθ
fi1uzind.3 [˙v/a]˙[˙e/b]˙ρnv[˙vn/a]˙[˙F/b]˙ρ
fi1uzind.4 w=vnf=Fθχ
fi1uzind.base [˙v/a]˙[˙e/b]˙ρv=Lψ
fi1uzind.step y+10[˙v/a]˙[˙e/b]˙ρv=y+1nvχψ
Assertion fi1uzind [˙V/a]˙[˙E/b]˙ρVFinLVφ

Proof

Step Hyp Ref Expression
1 fi1uzind.f FV
2 fi1uzind.l L0
3 fi1uzind.1 v=Ve=Eψφ
4 fi1uzind.2 v=we=fψθ
5 fi1uzind.3 [˙v/a]˙[˙e/b]˙ρnv[˙vn/a]˙[˙F/b]˙ρ
6 fi1uzind.4 w=vnf=Fθχ
7 fi1uzind.base [˙v/a]˙[˙e/b]˙ρv=Lψ
8 fi1uzind.step y+10[˙v/a]˙[˙e/b]˙ρv=y+1nvχψ
9 dfclel V0nn=Vn0
10 nn0z L0L
11 2 10 mp1i LVn0n=VL
12 nn0z n0n
13 12 ad2antlr LVn0n=Vn
14 breq2 V=nLVLn
15 14 eqcoms n=VLVLn
16 15 biimpcd LVn=VLn
17 16 adantr LVn0n=VLn
18 17 imp LVn0n=VLn
19 eqeq1 x=Lx=vL=v
20 19 anbi2d x=L[˙v/a]˙[˙e/b]˙ρx=v[˙v/a]˙[˙e/b]˙ρL=v
21 20 imbi1d x=L[˙v/a]˙[˙e/b]˙ρx=vψ[˙v/a]˙[˙e/b]˙ρL=vψ
22 21 2albidv x=Lve[˙v/a]˙[˙e/b]˙ρx=vψve[˙v/a]˙[˙e/b]˙ρL=vψ
23 eqeq1 x=yx=vy=v
24 23 anbi2d x=y[˙v/a]˙[˙e/b]˙ρx=v[˙v/a]˙[˙e/b]˙ρy=v
25 24 imbi1d x=y[˙v/a]˙[˙e/b]˙ρx=vψ[˙v/a]˙[˙e/b]˙ρy=vψ
26 25 2albidv x=yve[˙v/a]˙[˙e/b]˙ρx=vψve[˙v/a]˙[˙e/b]˙ρy=vψ
27 eqeq1 x=y+1x=vy+1=v
28 27 anbi2d x=y+1[˙v/a]˙[˙e/b]˙ρx=v[˙v/a]˙[˙e/b]˙ρy+1=v
29 28 imbi1d x=y+1[˙v/a]˙[˙e/b]˙ρx=vψ[˙v/a]˙[˙e/b]˙ρy+1=vψ
30 29 2albidv x=y+1ve[˙v/a]˙[˙e/b]˙ρx=vψve[˙v/a]˙[˙e/b]˙ρy+1=vψ
31 eqeq1 x=nx=vn=v
32 31 anbi2d x=n[˙v/a]˙[˙e/b]˙ρx=v[˙v/a]˙[˙e/b]˙ρn=v
33 32 imbi1d x=n[˙v/a]˙[˙e/b]˙ρx=vψ[˙v/a]˙[˙e/b]˙ρn=vψ
34 33 2albidv x=nve[˙v/a]˙[˙e/b]˙ρx=vψve[˙v/a]˙[˙e/b]˙ρn=vψ
35 eqcom L=vv=L
36 35 7 sylan2b [˙v/a]˙[˙e/b]˙ρL=vψ
37 36 gen2 ve[˙v/a]˙[˙e/b]˙ρL=vψ
38 37 a1i Lve[˙v/a]˙[˙e/b]˙ρL=vψ
39 simpl v=we=fv=w
40 simpr v=we=fe=f
41 40 sbceq1d v=we=f[˙e/b]˙ρ[˙f/b]˙ρ
42 39 41 sbceqbid v=we=f[˙v/a]˙[˙e/b]˙ρ[˙w/a]˙[˙f/b]˙ρ
43 fveq2 v=wv=w
44 43 eqeq2d v=wy=vy=w
45 44 adantr v=we=fy=vy=w
46 42 45 anbi12d v=we=f[˙v/a]˙[˙e/b]˙ρy=v[˙w/a]˙[˙f/b]˙ρy=w
47 46 4 imbi12d v=we=f[˙v/a]˙[˙e/b]˙ρy=vψ[˙w/a]˙[˙f/b]˙ρy=wθ
48 47 cbval2vw ve[˙v/a]˙[˙e/b]˙ρy=vψwf[˙w/a]˙[˙f/b]˙ρy=wθ
49 nn0ge0 L00L
50 0red y0
51 nn0re L0L
52 2 51 mp1i yL
53 zre yy
54 letr 0Ly0LLy0y
55 50 52 53 54 syl3anc y0LLy0y
56 0nn0 00
57 pm3.22 0yyy0y
58 0z 0
59 eluz1 0y0y0y
60 58 59 mp1i 0yyy0y0y
61 57 60 mpbird 0yyy0
62 eluznn0 00y0y0
63 56 61 62 sylancr 0yyy0
64 63 ex 0yyy0
65 55 64 syl6com 0LLyyyy0
66 65 ex 0LLyyyy0
67 66 com14 yLyy0Ly0
68 67 pm2.43a yLy0Ly0
69 68 imp yLy0Ly0
70 69 com12 0LyLyy0
71 2 49 70 mp2b yLyy0
72 71 3adant1 LyLyy0
73 eqcom y+1=vv=y+1
74 nn0p1gt0 y00<y+1
75 74 adantr y0v=y+10<y+1
76 simpr y0v=y+1v=y+1
77 75 76 breqtrrd y0v=y+10<v
78 73 77 sylan2b y0y+1=v0<v
79 78 adantrl y0[˙v/a]˙[˙e/b]˙ρy+1=v0<v
80 hashgt0elex vV0<vnnv
81 vex vV
82 81 a1i y0nvvV
83 simpr y0nvnv
84 simpl y0nvy0
85 hashdifsnp1 vVnvy0v=y+1vn=y
86 73 85 syl5bi vVnvy0y+1=vvn=y
87 82 83 84 86 syl3anc y0nvy+1=vvn=y
88 87 imp y0nvy+1=vvn=y
89 peano2nn0 y0y+10
90 89 ad2antrr y0nvy+1=vy+10
91 90 ad2antlr wf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρy0nvy+1=v[˙v/a]˙[˙e/b]˙ρy+10
92 simpr wf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρy0nvy+1=v[˙v/a]˙[˙e/b]˙ρ[˙v/a]˙[˙e/b]˙ρ
93 simplrr wf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρy0nvy+1=v[˙v/a]˙[˙e/b]˙ρy+1=v
94 simprlr wf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρy0nvy+1=vnv
95 94 adantr wf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρy0nvy+1=v[˙v/a]˙[˙e/b]˙ρnv
96 92 93 95 3jca wf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρy0nvy+1=v[˙v/a]˙[˙e/b]˙ρ[˙v/a]˙[˙e/b]˙ρy+1=vnv
97 91 96 jca wf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρy0nvy+1=v[˙v/a]˙[˙e/b]˙ρy+10[˙v/a]˙[˙e/b]˙ρy+1=vnv
98 81 difexi vnV
99 simpl w=vnf=Fw=vn
100 simpr w=vnf=Ff=F
101 100 sbceq1d w=vnf=F[˙f/b]˙ρ[˙F/b]˙ρ
102 99 101 sbceqbid w=vnf=F[˙w/a]˙[˙f/b]˙ρ[˙vn/a]˙[˙F/b]˙ρ
103 eqcom y=ww=y
104 fveqeq2 w=vnw=yvn=y
105 103 104 syl5bb w=vny=wvn=y
106 105 adantr w=vnf=Fy=wvn=y
107 102 106 anbi12d w=vnf=F[˙w/a]˙[˙f/b]˙ρy=w[˙vn/a]˙[˙F/b]˙ρvn=y
108 107 6 imbi12d w=vnf=F[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρvn=yχ
109 108 spc2gv vnVFVwf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρvn=yχ
110 98 1 109 mp2an wf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρvn=yχ
111 110 expdimp wf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρvn=yχ
112 111 ad2antrr wf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρy0nvy+1=v[˙v/a]˙[˙e/b]˙ρvn=yχ
113 73 3anbi2i [˙v/a]˙[˙e/b]˙ρy+1=vnv[˙v/a]˙[˙e/b]˙ρv=y+1nv
114 113 anbi2i y+10[˙v/a]˙[˙e/b]˙ρy+1=vnvy+10[˙v/a]˙[˙e/b]˙ρv=y+1nv
115 114 8 sylanb y+10[˙v/a]˙[˙e/b]˙ρy+1=vnvχψ
116 97 112 115 syl6an wf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρy0nvy+1=v[˙v/a]˙[˙e/b]˙ρvn=yψ
117 116 exp41 wf[˙w/a]˙[˙f/b]˙ρy=wθ[˙vn/a]˙[˙F/b]˙ρy0nvy+1=v[˙v/a]˙[˙e/b]˙ρvn=yψ
118 117 com15 vn=y[˙vn/a]˙[˙F/b]˙ρy0nvy+1=v[˙v/a]˙[˙e/b]˙ρwf[˙w/a]˙[˙f/b]˙ρy=wθψ
119 118 com23 vn=yy0nvy+1=v[˙vn/a]˙[˙F/b]˙ρ[˙v/a]˙[˙e/b]˙ρwf[˙w/a]˙[˙f/b]˙ρy=wθψ
120 88 119 mpcom y0nvy+1=v[˙vn/a]˙[˙F/b]˙ρ[˙v/a]˙[˙e/b]˙ρwf[˙w/a]˙[˙f/b]˙ρy=wθψ
121 120 ex y0nvy+1=v[˙vn/a]˙[˙F/b]˙ρ[˙v/a]˙[˙e/b]˙ρwf[˙w/a]˙[˙f/b]˙ρy=wθψ
122 121 com23 y0nv[˙vn/a]˙[˙F/b]˙ρy+1=v[˙v/a]˙[˙e/b]˙ρwf[˙w/a]˙[˙f/b]˙ρy=wθψ
123 122 ex y0nv[˙vn/a]˙[˙F/b]˙ρy+1=v[˙v/a]˙[˙e/b]˙ρwf[˙w/a]˙[˙f/b]˙ρy=wθψ
124 123 com15 [˙v/a]˙[˙e/b]˙ρnv[˙vn/a]˙[˙F/b]˙ρy+1=vy0wf[˙w/a]˙[˙f/b]˙ρy=wθψ
125 124 imp [˙v/a]˙[˙e/b]˙ρnv[˙vn/a]˙[˙F/b]˙ρy+1=vy0wf[˙w/a]˙[˙f/b]˙ρy=wθψ
126 5 125 mpd [˙v/a]˙[˙e/b]˙ρnvy+1=vy0wf[˙w/a]˙[˙f/b]˙ρy=wθψ
127 126 ex [˙v/a]˙[˙e/b]˙ρnvy+1=vy0wf[˙w/a]˙[˙f/b]˙ρy=wθψ
128 127 com4l nvy+1=vy0[˙v/a]˙[˙e/b]˙ρwf[˙w/a]˙[˙f/b]˙ρy=wθψ
129 128 exlimiv nnvy+1=vy0[˙v/a]˙[˙e/b]˙ρwf[˙w/a]˙[˙f/b]˙ρy=wθψ
130 80 129 syl vV0<vy+1=vy0[˙v/a]˙[˙e/b]˙ρwf[˙w/a]˙[˙f/b]˙ρy=wθψ
131 130 ex vV0<vy+1=vy0[˙v/a]˙[˙e/b]˙ρwf[˙w/a]˙[˙f/b]˙ρy=wθψ
132 131 com25 vV[˙v/a]˙[˙e/b]˙ρy+1=vy00<vwf[˙w/a]˙[˙f/b]˙ρy=wθψ
133 132 elv [˙v/a]˙[˙e/b]˙ρy+1=vy00<vwf[˙w/a]˙[˙f/b]˙ρy=wθψ
134 133 imp [˙v/a]˙[˙e/b]˙ρy+1=vy00<vwf[˙w/a]˙[˙f/b]˙ρy=wθψ
135 134 impcom y0[˙v/a]˙[˙e/b]˙ρy+1=v0<vwf[˙w/a]˙[˙f/b]˙ρy=wθψ
136 79 135 mpd y0[˙v/a]˙[˙e/b]˙ρy+1=vwf[˙w/a]˙[˙f/b]˙ρy=wθψ
137 72 136 sylan LyLy[˙v/a]˙[˙e/b]˙ρy+1=vwf[˙w/a]˙[˙f/b]˙ρy=wθψ
138 137 impancom LyLywf[˙w/a]˙[˙f/b]˙ρy=wθ[˙v/a]˙[˙e/b]˙ρy+1=vψ
139 138 alrimivv LyLywf[˙w/a]˙[˙f/b]˙ρy=wθve[˙v/a]˙[˙e/b]˙ρy+1=vψ
140 139 ex LyLywf[˙w/a]˙[˙f/b]˙ρy=wθve[˙v/a]˙[˙e/b]˙ρy+1=vψ
141 48 140 syl5bi LyLyve[˙v/a]˙[˙e/b]˙ρy=vψve[˙v/a]˙[˙e/b]˙ρy+1=vψ
142 22 26 30 34 38 141 uzind LnLnve[˙v/a]˙[˙e/b]˙ρn=vψ
143 11 13 18 142 syl3anc LVn0n=Vve[˙v/a]˙[˙e/b]˙ρn=vψ
144 sbcex [˙V/a]˙[˙E/b]˙ρVV
145 sbccom [˙V/a]˙[˙E/b]˙ρ[˙E/b]˙[˙V/a]˙ρ
146 sbcex [˙E/b]˙[˙V/a]˙ρEV
147 145 146 sylbi [˙V/a]˙[˙E/b]˙ρEV
148 144 147 jca [˙V/a]˙[˙E/b]˙ρVVEV
149 simpl v=Ve=Ev=V
150 simpr v=Ve=Ee=E
151 150 sbceq1d v=Ve=E[˙e/b]˙ρ[˙E/b]˙ρ
152 149 151 sbceqbid v=Ve=E[˙v/a]˙[˙e/b]˙ρ[˙V/a]˙[˙E/b]˙ρ
153 fveq2 v=Vv=V
154 153 eqeq2d v=Vn=vn=V
155 154 adantr v=Ve=En=vn=V
156 152 155 anbi12d v=Ve=E[˙v/a]˙[˙e/b]˙ρn=v[˙V/a]˙[˙E/b]˙ρn=V
157 156 3 imbi12d v=Ve=E[˙v/a]˙[˙e/b]˙ρn=vψ[˙V/a]˙[˙E/b]˙ρn=Vφ
158 157 spc2gv VVEVve[˙v/a]˙[˙e/b]˙ρn=vψ[˙V/a]˙[˙E/b]˙ρn=Vφ
159 158 com23 VVEV[˙V/a]˙[˙E/b]˙ρn=Vve[˙v/a]˙[˙e/b]˙ρn=vψφ
160 159 expd VVEV[˙V/a]˙[˙E/b]˙ρn=Vve[˙v/a]˙[˙e/b]˙ρn=vψφ
161 148 160 mpcom [˙V/a]˙[˙E/b]˙ρn=Vve[˙v/a]˙[˙e/b]˙ρn=vψφ
162 161 imp [˙V/a]˙[˙E/b]˙ρn=Vve[˙v/a]˙[˙e/b]˙ρn=vψφ
163 143 162 syl5com LVn0n=V[˙V/a]˙[˙E/b]˙ρn=Vφ
164 163 exp31 LVn0n=V[˙V/a]˙[˙E/b]˙ρn=Vφ
165 164 com14 [˙V/a]˙[˙E/b]˙ρn=Vn0n=VLVφ
166 165 expcom n=V[˙V/a]˙[˙E/b]˙ρn0n=VLVφ
167 166 com24 n=Vn=Vn0[˙V/a]˙[˙E/b]˙ρLVφ
168 167 pm2.43i n=Vn0[˙V/a]˙[˙E/b]˙ρLVφ
169 168 imp n=Vn0[˙V/a]˙[˙E/b]˙ρLVφ
170 169 exlimiv nn=Vn0[˙V/a]˙[˙E/b]˙ρLVφ
171 9 170 sylbi V0[˙V/a]˙[˙E/b]˙ρLVφ
172 hashcl VFinV0
173 171 172 syl11 [˙V/a]˙[˙E/b]˙ρVFinLVφ
174 173 3imp [˙V/a]˙[˙E/b]˙ρVFinLVφ