Metamath Proof Explorer


Theorem frlmelbas

Description: Membership in the base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by AV, 23-Jun-2019)

Ref Expression
Hypotheses frlmval.f F=RfreeLModI
frlmelbas.n N=BaseR
frlmelbas.z 0˙=0R
frlmelbas.b B=BaseF
Assertion frlmelbas RVIWXBXNIfinSupp0˙X

Proof

Step Hyp Ref Expression
1 frlmval.f F=RfreeLModI
2 frlmelbas.n N=BaseR
3 frlmelbas.z 0˙=0R
4 frlmelbas.b B=BaseF
5 eqid kNI|finSupp0˙k=kNI|finSupp0˙k
6 1 2 3 5 frlmbas RVIWkNI|finSupp0˙k=BaseF
7 4 6 eqtr4id RVIWB=kNI|finSupp0˙k
8 7 eleq2d RVIWXBXkNI|finSupp0˙k
9 breq1 k=XfinSupp0˙kfinSupp0˙X
10 9 elrab XkNI|finSupp0˙kXNIfinSupp0˙X
11 8 10 bitrdi RVIWXBXNIfinSupp0˙X