| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppind.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
fsuppind.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
fsuppind.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
fsuppind.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 5 |
|
fsuppind.v |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
fsuppind.0 |
⊢ ( 𝜑 → ( 𝐼 × { 0 } ) ∈ 𝐻 ) |
| 7 |
|
fsuppind.1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑎 , 𝑏 , 0 ) ) ∈ 𝐻 ) |
| 8 |
|
fsuppind.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻 ) ) → ( 𝑥 ∘f + 𝑦 ) ∈ 𝐻 ) |
| 9 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 11 |
10 5
|
elmapd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ ) → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) |
| 13 |
|
eqeq1 |
⊢ ( 𝑖 = 1 → ( 𝑖 = ( ♯ ‘ ( ℎ supp 0 ) ) ↔ 1 = ( ♯ ‘ ( ℎ supp 0 ) ) ) ) |
| 14 |
13
|
imbi1d |
⊢ ( 𝑖 = 1 → ( ( 𝑖 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ↔ ( 1 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ) |
| 15 |
14
|
ralbidv |
⊢ ( 𝑖 = 1 → ( ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑖 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ↔ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 1 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ) |
| 16 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 = ( ♯ ‘ ( ℎ supp 0 ) ) ↔ 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) ) ) |
| 17 |
16
|
imbi1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑖 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ↔ ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ) |
| 18 |
17
|
ralbidv |
⊢ ( 𝑖 = 𝑗 → ( ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑖 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ↔ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ) |
| 19 |
|
eqeq1 |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 𝑖 = ( ♯ ‘ ( ℎ supp 0 ) ) ↔ ( 𝑗 + 1 ) = ( ♯ ‘ ( ℎ supp 0 ) ) ) ) |
| 20 |
19
|
imbi1d |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( ( 𝑖 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ↔ ( ( 𝑗 + 1 ) = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ) |
| 21 |
20
|
ralbidv |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑖 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ↔ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( ( 𝑗 + 1 ) = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ) |
| 22 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑛 → ( 𝑖 = ( ♯ ‘ ( ℎ supp 0 ) ) ↔ 𝑛 = ( ♯ ‘ ( ℎ supp 0 ) ) ) ) |
| 23 |
22
|
imbi1d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝑖 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ↔ ( 𝑛 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ) |
| 24 |
23
|
ralbidv |
⊢ ( 𝑖 = 𝑛 → ( ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑖 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ↔ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑛 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ) |
| 25 |
|
eqcom |
⊢ ( 1 = ( ♯ ‘ ( ℎ supp 0 ) ) ↔ ( ♯ ‘ ( ℎ supp 0 ) ) = 1 ) |
| 26 |
|
ovex |
⊢ ( ℎ supp 0 ) ∈ V |
| 27 |
|
euhash1 |
⊢ ( ( ℎ supp 0 ) ∈ V → ( ( ♯ ‘ ( ℎ supp 0 ) ) = 1 ↔ ∃! 𝑐 𝑐 ∈ ( ℎ supp 0 ) ) ) |
| 28 |
26 27
|
ax-mp |
⊢ ( ( ♯ ‘ ( ℎ supp 0 ) ) = 1 ↔ ∃! 𝑐 𝑐 ∈ ( ℎ supp 0 ) ) |
| 29 |
25 28
|
bitri |
⊢ ( 1 = ( ♯ ‘ ( ℎ supp 0 ) ) ↔ ∃! 𝑐 𝑐 ∈ ( ℎ supp 0 ) ) |
| 30 |
|
elmapfn |
⊢ ( ℎ ∈ ( 𝐵 ↑m 𝐼 ) → ℎ Fn 𝐼 ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) → ℎ Fn 𝐼 ) |
| 32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐼 ∈ 𝑉 ) |
| 33 |
2
|
fvexi |
⊢ 0 ∈ V |
| 34 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) → 0 ∈ V ) |
| 35 |
|
elsuppfn |
⊢ ( ( ℎ Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( 𝑐 ∈ ( ℎ supp 0 ) ↔ ( 𝑐 ∈ 𝐼 ∧ ( ℎ ‘ 𝑐 ) ≠ 0 ) ) ) |
| 36 |
31 32 34 35
|
syl3anc |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑐 ∈ ( ℎ supp 0 ) ↔ ( 𝑐 ∈ 𝐼 ∧ ( ℎ ‘ 𝑐 ) ≠ 0 ) ) ) |
| 37 |
36
|
eubidv |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) → ( ∃! 𝑐 𝑐 ∈ ( ℎ supp 0 ) ↔ ∃! 𝑐 ( 𝑐 ∈ 𝐼 ∧ ( ℎ ‘ 𝑐 ) ≠ 0 ) ) ) |
| 38 |
|
df-reu |
⊢ ( ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ↔ ∃! 𝑐 ( 𝑐 ∈ 𝐼 ∧ ( ℎ ‘ 𝑐 ) ≠ 0 ) ) |
| 39 |
37 38
|
bitr4di |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) → ( ∃! 𝑐 𝑐 ∈ ( ℎ supp 0 ) ↔ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) |
| 40 |
30
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ℎ Fn 𝐼 ) |
| 41 |
|
fvex |
⊢ ( ℎ ‘ 𝑥 ) ∈ V |
| 42 |
41 33
|
ifex |
⊢ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ∈ V |
| 43 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) |
| 44 |
42 43
|
fnmpti |
⊢ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) Fn 𝐼 |
| 45 |
44
|
a1i |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) Fn 𝐼 ) |
| 46 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑣 → ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ↔ 𝑣 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) ) |
| 47 |
|
fveq2 |
⊢ ( 𝑥 = 𝑣 → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ 𝑣 ) ) |
| 48 |
46 47
|
ifbieq1d |
⊢ ( 𝑥 = 𝑣 → if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) = if ( 𝑣 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑣 ) , 0 ) ) |
| 49 |
48 43 42
|
fvmpt3i |
⊢ ( 𝑣 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) ‘ 𝑣 ) = if ( 𝑣 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑣 ) , 0 ) ) |
| 50 |
49
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) ‘ 𝑣 ) = if ( 𝑣 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑣 ) , 0 ) ) |
| 51 |
|
eqidd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) ∧ 𝑣 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) → ( ℎ ‘ 𝑣 ) = ( ℎ ‘ 𝑣 ) ) |
| 52 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → 𝑣 ∈ 𝐼 ) |
| 53 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) |
| 54 |
|
fveq2 |
⊢ ( 𝑐 = 𝑣 → ( ℎ ‘ 𝑐 ) = ( ℎ ‘ 𝑣 ) ) |
| 55 |
54
|
neeq1d |
⊢ ( 𝑐 = 𝑣 → ( ( ℎ ‘ 𝑐 ) ≠ 0 ↔ ( ℎ ‘ 𝑣 ) ≠ 0 ) ) |
| 56 |
55
|
riota2 |
⊢ ( ( 𝑣 ∈ 𝐼 ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ( ( ℎ ‘ 𝑣 ) ≠ 0 ↔ ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) = 𝑣 ) ) |
| 57 |
52 53 56
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( ( ℎ ‘ 𝑣 ) ≠ 0 ↔ ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) = 𝑣 ) ) |
| 58 |
|
necom |
⊢ ( 0 ≠ ( ℎ ‘ 𝑣 ) ↔ ( ℎ ‘ 𝑣 ) ≠ 0 ) |
| 59 |
|
eqcom |
⊢ ( 𝑣 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ↔ ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) = 𝑣 ) |
| 60 |
57 58 59
|
3bitr4g |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( 0 ≠ ( ℎ ‘ 𝑣 ) ↔ 𝑣 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) ) |
| 61 |
60
|
biimpd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( 0 ≠ ( ℎ ‘ 𝑣 ) → 𝑣 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) ) |
| 62 |
61
|
necon1bd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( ¬ 𝑣 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → 0 = ( ℎ ‘ 𝑣 ) ) ) |
| 63 |
62
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) ∧ ¬ 𝑣 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) → 0 = ( ℎ ‘ 𝑣 ) ) |
| 64 |
51 63
|
ifeqda |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → if ( 𝑣 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑣 ) , 0 ) = ( ℎ ‘ 𝑣 ) ) |
| 65 |
50 64
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( ℎ ‘ 𝑣 ) = ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) ‘ 𝑣 ) ) |
| 66 |
40 45 65
|
eqfnfvd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ℎ = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) ) |
| 67 |
|
riotacl |
⊢ ( ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 → ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∈ 𝐼 ) |
| 68 |
67
|
adantl |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∈ 𝐼 ) |
| 69 |
|
elmapi |
⊢ ( ℎ ∈ ( 𝐵 ↑m 𝐼 ) → ℎ : 𝐼 ⟶ 𝐵 ) |
| 70 |
69
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ℎ : 𝐼 ⟶ 𝐵 ) |
| 71 |
70 68
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ( ℎ ‘ ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) ∈ 𝐵 ) |
| 72 |
7
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐵 ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑎 , 𝑏 , 0 ) ) ∈ 𝐻 ) |
| 73 |
72
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐵 ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑎 , 𝑏 , 0 ) ) ∈ 𝐻 ) |
| 74 |
|
eqeq2 |
⊢ ( 𝑎 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ( 𝑥 = 𝑎 ↔ 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) ) |
| 75 |
74
|
ifbid |
⊢ ( 𝑎 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → if ( 𝑥 = 𝑎 , 𝑏 , 0 ) = if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , 𝑏 , 0 ) ) |
| 76 |
75
|
mpteq2dv |
⊢ ( 𝑎 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑎 , 𝑏 , 0 ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , 𝑏 , 0 ) ) ) |
| 77 |
76
|
eleq1d |
⊢ ( 𝑎 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑎 , 𝑏 , 0 ) ) ∈ 𝐻 ↔ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , 𝑏 , 0 ) ) ∈ 𝐻 ) ) |
| 78 |
|
fveq2 |
⊢ ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) ) |
| 79 |
78
|
eqeq2d |
⊢ ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ( 𝑏 = ( ℎ ‘ 𝑥 ) ↔ 𝑏 = ( ℎ ‘ ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) ) ) |
| 80 |
79
|
biimparc |
⊢ ( ( 𝑏 = ( ℎ ‘ ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) ∧ 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) → 𝑏 = ( ℎ ‘ 𝑥 ) ) |
| 81 |
80
|
ifeq1da |
⊢ ( 𝑏 = ( ℎ ‘ ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) → if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , 𝑏 , 0 ) = if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) |
| 82 |
81
|
mpteq2dv |
⊢ ( 𝑏 = ( ℎ ‘ ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , 𝑏 , 0 ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) ) |
| 83 |
82
|
eleq1d |
⊢ ( 𝑏 = ( ℎ ‘ ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , 𝑏 , 0 ) ) ∈ 𝐻 ↔ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) ) |
| 84 |
77 83
|
rspc2va |
⊢ ( ( ( ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ∈ 𝐼 ∧ ( ℎ ‘ ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) ) ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐵 ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑎 , 𝑏 , 0 ) ) ∈ 𝐻 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) |
| 85 |
68 71 73 84
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = ( ℩ 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) , ( ℎ ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) |
| 86 |
66 85
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 ) → ℎ ∈ 𝐻 ) |
| 87 |
86
|
ex |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) → ( ∃! 𝑐 ∈ 𝐼 ( ℎ ‘ 𝑐 ) ≠ 0 → ℎ ∈ 𝐻 ) ) |
| 88 |
39 87
|
sylbid |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) → ( ∃! 𝑐 𝑐 ∈ ( ℎ supp 0 ) → ℎ ∈ 𝐻 ) ) |
| 89 |
29 88
|
biimtrid |
⊢ ( ( 𝜑 ∧ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 1 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) |
| 90 |
89
|
ralrimiva |
⊢ ( 𝜑 → ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 1 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) |
| 91 |
|
fvoveq1 |
⊢ ( 𝑚 = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) → ( ♯ ‘ ( 𝑚 supp 0 ) ) = ( ♯ ‘ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ) ) |
| 92 |
91
|
eqeq2d |
⊢ ( 𝑚 = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) → ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ↔ 𝑗 = ( ♯ ‘ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ) ) ) |
| 93 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) → ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) = ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) |
| 94 |
93
|
eqeq2d |
⊢ ( 𝑚 = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) → ( 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ↔ 𝑙 = ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 95 |
92 94
|
anbi12d |
⊢ ( 𝑚 = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) → ( ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ↔ ( 𝑗 = ( ♯ ‘ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ) ∧ 𝑙 = ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) ) |
| 96 |
1 2
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| 97 |
4 96
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 98 |
97
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ 𝐵 ) |
| 99 |
|
eqid |
⊢ ( 𝐵 ↑m 𝐼 ) = ( 𝐵 ↑m 𝐼 ) |
| 100 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 101 |
100
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 102 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
| 103 |
99 101 102
|
mapfvd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑙 ‘ 𝑥 ) ∈ 𝐵 ) |
| 104 |
98 103
|
ifcld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑥 ∈ 𝐼 ) → if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 105 |
104
|
fmpttd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) : 𝐼 ⟶ 𝐵 ) |
| 106 |
9
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → 𝐵 ∈ V ) |
| 107 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → 𝐼 ∈ 𝑉 ) |
| 108 |
106 107
|
elmapd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∈ ( 𝐵 ↑m 𝐼 ) ↔ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) : 𝐼 ⟶ 𝐵 ) ) |
| 109 |
105 108
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 110 |
109
|
adantrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 111 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → ( 𝑙 supp 0 ) ∈ V ) |
| 112 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → 𝑧 ∈ 𝐼 ) |
| 113 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → ( 𝑙 ‘ 𝑧 ) ≠ 0 ) |
| 114 |
|
elmapfn |
⊢ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑙 Fn 𝐼 ) |
| 115 |
114
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → 𝑙 Fn 𝐼 ) |
| 116 |
115
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → 𝑙 Fn 𝐼 ) |
| 117 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → 𝐼 ∈ 𝑉 ) |
| 118 |
33
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → 0 ∈ V ) |
| 119 |
|
elsuppfn |
⊢ ( ( 𝑙 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( 𝑧 ∈ ( 𝑙 supp 0 ) ↔ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) ) |
| 120 |
116 117 118 119
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → ( 𝑧 ∈ ( 𝑙 supp 0 ) ↔ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) ) |
| 121 |
112 113 120
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → 𝑧 ∈ ( 𝑙 supp 0 ) ) |
| 122 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → 𝑗 ∈ ℕ ) |
| 123 |
122
|
nnnn0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → 𝑗 ∈ ℕ0 ) |
| 124 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) |
| 125 |
124
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → ( ♯ ‘ ( 𝑙 supp 0 ) ) = ( 𝑗 + 1 ) ) |
| 126 |
|
hashdifsnp1 |
⊢ ( ( ( 𝑙 supp 0 ) ∈ V ∧ 𝑧 ∈ ( 𝑙 supp 0 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑙 supp 0 ) ) = ( 𝑗 + 1 ) → ( ♯ ‘ ( ( 𝑙 supp 0 ) ∖ { 𝑧 } ) ) = 𝑗 ) ) |
| 127 |
126
|
imp |
⊢ ( ( ( ( 𝑙 supp 0 ) ∈ V ∧ 𝑧 ∈ ( 𝑙 supp 0 ) ∧ 𝑗 ∈ ℕ0 ) ∧ ( ♯ ‘ ( 𝑙 supp 0 ) ) = ( 𝑗 + 1 ) ) → ( ♯ ‘ ( ( 𝑙 supp 0 ) ∖ { 𝑧 } ) ) = 𝑗 ) |
| 128 |
111 121 123 125 127
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → ( ♯ ‘ ( ( 𝑙 supp 0 ) ∖ { 𝑧 } ) ) = 𝑗 ) |
| 129 |
|
eldifsn |
⊢ ( 𝑣 ∈ ( ( 𝑙 supp 0 ) ∖ { 𝑧 } ) ↔ ( 𝑣 ∈ ( 𝑙 supp 0 ) ∧ 𝑣 ≠ 𝑧 ) ) |
| 130 |
|
fvex |
⊢ ( 𝑙 ‘ 𝑥 ) ∈ V |
| 131 |
33 130
|
ifex |
⊢ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ∈ V |
| 132 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) |
| 133 |
131 132
|
fnmpti |
⊢ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) Fn 𝐼 |
| 134 |
133
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) Fn 𝐼 ) |
| 135 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → 𝐼 ∈ 𝑉 ) |
| 136 |
33
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → 0 ∈ V ) |
| 137 |
|
elsuppfn |
⊢ ( ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( 𝑣 ∈ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ↔ ( 𝑣 ∈ 𝐼 ∧ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ‘ 𝑣 ) ≠ 0 ) ) ) |
| 138 |
134 135 136 137
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( 𝑣 ∈ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ↔ ( 𝑣 ∈ 𝐼 ∧ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ‘ 𝑣 ) ≠ 0 ) ) ) |
| 139 |
|
iftrue |
⊢ ( 𝑣 = 𝑧 → if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) = 0 ) |
| 140 |
|
olc |
⊢ ( 𝑣 = 𝑧 → ( ( 𝑙 ‘ 𝑣 ) = 0 ∨ 𝑣 = 𝑧 ) ) |
| 141 |
139 140
|
2thd |
⊢ ( 𝑣 = 𝑧 → ( if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) = 0 ↔ ( ( 𝑙 ‘ 𝑣 ) = 0 ∨ 𝑣 = 𝑧 ) ) ) |
| 142 |
|
iffalse |
⊢ ( ¬ 𝑣 = 𝑧 → if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) = ( 𝑙 ‘ 𝑣 ) ) |
| 143 |
142
|
eqeq1d |
⊢ ( ¬ 𝑣 = 𝑧 → ( if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) = 0 ↔ ( 𝑙 ‘ 𝑣 ) = 0 ) ) |
| 144 |
|
biorf |
⊢ ( ¬ 𝑣 = 𝑧 → ( ( 𝑙 ‘ 𝑣 ) = 0 ↔ ( 𝑣 = 𝑧 ∨ ( 𝑙 ‘ 𝑣 ) = 0 ) ) ) |
| 145 |
|
orcom |
⊢ ( ( ( 𝑙 ‘ 𝑣 ) = 0 ∨ 𝑣 = 𝑧 ) ↔ ( 𝑣 = 𝑧 ∨ ( 𝑙 ‘ 𝑣 ) = 0 ) ) |
| 146 |
144 145
|
bitr4di |
⊢ ( ¬ 𝑣 = 𝑧 → ( ( 𝑙 ‘ 𝑣 ) = 0 ↔ ( ( 𝑙 ‘ 𝑣 ) = 0 ∨ 𝑣 = 𝑧 ) ) ) |
| 147 |
143 146
|
bitrd |
⊢ ( ¬ 𝑣 = 𝑧 → ( if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) = 0 ↔ ( ( 𝑙 ‘ 𝑣 ) = 0 ∨ 𝑣 = 𝑧 ) ) ) |
| 148 |
141 147
|
pm2.61i |
⊢ ( if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) = 0 ↔ ( ( 𝑙 ‘ 𝑣 ) = 0 ∨ 𝑣 = 𝑧 ) ) |
| 149 |
148
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) = 0 ↔ ( ( 𝑙 ‘ 𝑣 ) = 0 ∨ 𝑣 = 𝑧 ) ) ) |
| 150 |
149
|
necon3abid |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) ≠ 0 ↔ ¬ ( ( 𝑙 ‘ 𝑣 ) = 0 ∨ 𝑣 = 𝑧 ) ) ) |
| 151 |
|
neanior |
⊢ ( ( ( 𝑙 ‘ 𝑣 ) ≠ 0 ∧ 𝑣 ≠ 𝑧 ) ↔ ¬ ( ( 𝑙 ‘ 𝑣 ) = 0 ∨ 𝑣 = 𝑧 ) ) |
| 152 |
150 151
|
bitr4di |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) ≠ 0 ↔ ( ( 𝑙 ‘ 𝑣 ) ≠ 0 ∧ 𝑣 ≠ 𝑧 ) ) ) |
| 153 |
152
|
anbi2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( ( 𝑣 ∈ 𝐼 ∧ if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) ≠ 0 ) ↔ ( 𝑣 ∈ 𝐼 ∧ ( ( 𝑙 ‘ 𝑣 ) ≠ 0 ∧ 𝑣 ≠ 𝑧 ) ) ) ) |
| 154 |
|
anass |
⊢ ( ( ( 𝑣 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑣 ) ≠ 0 ) ∧ 𝑣 ≠ 𝑧 ) ↔ ( 𝑣 ∈ 𝐼 ∧ ( ( 𝑙 ‘ 𝑣 ) ≠ 0 ∧ 𝑣 ≠ 𝑧 ) ) ) |
| 155 |
153 154
|
bitr4di |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( ( 𝑣 ∈ 𝐼 ∧ if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) ≠ 0 ) ↔ ( ( 𝑣 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑣 ) ≠ 0 ) ∧ 𝑣 ≠ 𝑧 ) ) ) |
| 156 |
|
equequ1 |
⊢ ( 𝑥 = 𝑣 → ( 𝑥 = 𝑧 ↔ 𝑣 = 𝑧 ) ) |
| 157 |
|
fveq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝑙 ‘ 𝑥 ) = ( 𝑙 ‘ 𝑣 ) ) |
| 158 |
156 157
|
ifbieq2d |
⊢ ( 𝑥 = 𝑣 → if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) = if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) ) |
| 159 |
158 132 131
|
fvmpt3i |
⊢ ( 𝑣 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ‘ 𝑣 ) = if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) ) |
| 160 |
159
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ‘ 𝑣 ) = if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) ) |
| 161 |
160
|
neeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ‘ 𝑣 ) ≠ 0 ↔ if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) ≠ 0 ) ) |
| 162 |
161
|
pm5.32da |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( ( 𝑣 ∈ 𝐼 ∧ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ‘ 𝑣 ) ≠ 0 ) ↔ ( 𝑣 ∈ 𝐼 ∧ if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) ≠ 0 ) ) ) |
| 163 |
115
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → 𝑙 Fn 𝐼 ) |
| 164 |
|
elsuppfn |
⊢ ( ( 𝑙 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( 𝑣 ∈ ( 𝑙 supp 0 ) ↔ ( 𝑣 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑣 ) ≠ 0 ) ) ) |
| 165 |
163 135 136 164
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( 𝑣 ∈ ( 𝑙 supp 0 ) ↔ ( 𝑣 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑣 ) ≠ 0 ) ) ) |
| 166 |
165
|
anbi1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( ( 𝑣 ∈ ( 𝑙 supp 0 ) ∧ 𝑣 ≠ 𝑧 ) ↔ ( ( 𝑣 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑣 ) ≠ 0 ) ∧ 𝑣 ≠ 𝑧 ) ) ) |
| 167 |
155 162 166
|
3bitr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( ( 𝑣 ∈ 𝐼 ∧ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ‘ 𝑣 ) ≠ 0 ) ↔ ( 𝑣 ∈ ( 𝑙 supp 0 ) ∧ 𝑣 ≠ 𝑧 ) ) ) |
| 168 |
138 167
|
bitr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( ( 𝑣 ∈ ( 𝑙 supp 0 ) ∧ 𝑣 ≠ 𝑧 ) ↔ 𝑣 ∈ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ) ) |
| 169 |
129 168
|
bitrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( 𝑣 ∈ ( ( 𝑙 supp 0 ) ∖ { 𝑧 } ) ↔ 𝑣 ∈ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ) ) |
| 170 |
169
|
eqrdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( ( 𝑙 supp 0 ) ∖ { 𝑧 } ) = ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ) |
| 171 |
170
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( ♯ ‘ ( ( 𝑙 supp 0 ) ∖ { 𝑧 } ) ) = ( ♯ ‘ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ) ) |
| 172 |
171
|
adantrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → ( ♯ ‘ ( ( 𝑙 supp 0 ) ∖ { 𝑧 } ) ) = ( ♯ ‘ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ) ) |
| 173 |
128 172
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → 𝑗 = ( ♯ ‘ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ) ) |
| 174 |
130 33
|
ifex |
⊢ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ∈ V |
| 175 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) |
| 176 |
174 175
|
fnmpti |
⊢ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) Fn 𝐼 |
| 177 |
176
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) Fn 𝐼 ) |
| 178 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 179 |
134 177 135 135 178
|
offn |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) Fn 𝐼 ) |
| 180 |
156 157
|
ifbieq1d |
⊢ ( 𝑥 = 𝑣 → if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) = if ( 𝑣 = 𝑧 , ( 𝑙 ‘ 𝑣 ) , 0 ) ) |
| 181 |
180 175 174
|
fvmpt3i |
⊢ ( 𝑣 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ‘ 𝑣 ) = if ( 𝑣 = 𝑧 , ( 𝑙 ‘ 𝑣 ) , 0 ) ) |
| 182 |
181
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ‘ 𝑣 ) = if ( 𝑣 = 𝑧 , ( 𝑙 ‘ 𝑣 ) , 0 ) ) |
| 183 |
134 177 135 135 178 160 182
|
ofval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑣 ) = ( if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) + if ( 𝑣 = 𝑧 , ( 𝑙 ‘ 𝑣 ) , 0 ) ) ) |
| 184 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → 𝐺 ∈ Grp ) |
| 185 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( ( 𝑙 ‘ 𝑧 ) ≠ 0 ∧ 𝑣 ∈ 𝐼 ) ) → 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 186 |
185
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 187 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → 𝑣 ∈ 𝐼 ) |
| 188 |
99 186 187
|
mapfvd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑙 ‘ 𝑣 ) ∈ 𝐵 ) |
| 189 |
1 3 2
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑙 ‘ 𝑣 ) ∈ 𝐵 ) → ( 0 + ( 𝑙 ‘ 𝑣 ) ) = ( 𝑙 ‘ 𝑣 ) ) |
| 190 |
1 3 2
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑙 ‘ 𝑣 ) ∈ 𝐵 ) → ( ( 𝑙 ‘ 𝑣 ) + 0 ) = ( 𝑙 ‘ 𝑣 ) ) |
| 191 |
189 190
|
ifeq12d |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑙 ‘ 𝑣 ) ∈ 𝐵 ) → if ( 𝑣 = 𝑧 , ( 0 + ( 𝑙 ‘ 𝑣 ) ) , ( ( 𝑙 ‘ 𝑣 ) + 0 ) ) = if ( 𝑣 = 𝑧 , ( 𝑙 ‘ 𝑣 ) , ( 𝑙 ‘ 𝑣 ) ) ) |
| 192 |
184 188 191
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → if ( 𝑣 = 𝑧 , ( 0 + ( 𝑙 ‘ 𝑣 ) ) , ( ( 𝑙 ‘ 𝑣 ) + 0 ) ) = if ( 𝑣 = 𝑧 , ( 𝑙 ‘ 𝑣 ) , ( 𝑙 ‘ 𝑣 ) ) ) |
| 193 |
|
ovif12 |
⊢ ( if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) + if ( 𝑣 = 𝑧 , ( 𝑙 ‘ 𝑣 ) , 0 ) ) = if ( 𝑣 = 𝑧 , ( 0 + ( 𝑙 ‘ 𝑣 ) ) , ( ( 𝑙 ‘ 𝑣 ) + 0 ) ) |
| 194 |
|
ifid |
⊢ if ( 𝑣 = 𝑧 , ( 𝑙 ‘ 𝑣 ) , ( 𝑙 ‘ 𝑣 ) ) = ( 𝑙 ‘ 𝑣 ) |
| 195 |
194
|
eqcomi |
⊢ ( 𝑙 ‘ 𝑣 ) = if ( 𝑣 = 𝑧 , ( 𝑙 ‘ 𝑣 ) , ( 𝑙 ‘ 𝑣 ) ) |
| 196 |
192 193 195
|
3eqtr4g |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( if ( 𝑣 = 𝑧 , 0 , ( 𝑙 ‘ 𝑣 ) ) + if ( 𝑣 = 𝑧 , ( 𝑙 ‘ 𝑣 ) , 0 ) ) = ( 𝑙 ‘ 𝑣 ) ) |
| 197 |
183 196
|
eqtr2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑙 ‘ 𝑣 ) = ( ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ‘ 𝑣 ) ) |
| 198 |
163 179 197
|
eqfnfvd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) → 𝑙 = ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) |
| 199 |
198
|
adantrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → 𝑙 = ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) |
| 200 |
173 199
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → ( 𝑗 = ( ♯ ‘ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ) ∧ 𝑙 = ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 201 |
200
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → ( 𝑗 = ( ♯ ‘ ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) supp 0 ) ) ∧ 𝑙 = ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 0 , ( 𝑙 ‘ 𝑥 ) ) ) ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 202 |
95 110 201
|
rspcedvdw |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ≠ 0 ) ) → ∃ 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 203 |
114
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → 𝑙 Fn 𝐼 ) |
| 204 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → 𝐼 ∈ 𝑉 ) |
| 205 |
33
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → 0 ∈ V ) |
| 206 |
|
suppvalfn |
⊢ ( ( 𝑙 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( 𝑙 supp 0 ) = { 𝑧 ∈ 𝐼 ∣ ( 𝑙 ‘ 𝑧 ) ≠ 0 } ) |
| 207 |
203 204 205 206
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → ( 𝑙 supp 0 ) = { 𝑧 ∈ 𝐼 ∣ ( 𝑙 ‘ 𝑧 ) ≠ 0 } ) |
| 208 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) |
| 209 |
|
peano2nn |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) |
| 210 |
209
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 211 |
210
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → ( 𝑗 + 1 ) ≠ 0 ) |
| 212 |
208 211
|
eqnetrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → ( ♯ ‘ ( 𝑙 supp 0 ) ) ≠ 0 ) |
| 213 |
|
ovex |
⊢ ( 𝑙 supp 0 ) ∈ V |
| 214 |
|
hasheq0 |
⊢ ( ( 𝑙 supp 0 ) ∈ V → ( ( ♯ ‘ ( 𝑙 supp 0 ) ) = 0 ↔ ( 𝑙 supp 0 ) = ∅ ) ) |
| 215 |
214
|
necon3bid |
⊢ ( ( 𝑙 supp 0 ) ∈ V → ( ( ♯ ‘ ( 𝑙 supp 0 ) ) ≠ 0 ↔ ( 𝑙 supp 0 ) ≠ ∅ ) ) |
| 216 |
213 215
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → ( ( ♯ ‘ ( 𝑙 supp 0 ) ) ≠ 0 ↔ ( 𝑙 supp 0 ) ≠ ∅ ) ) |
| 217 |
212 216
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → ( 𝑙 supp 0 ) ≠ ∅ ) |
| 218 |
207 217
|
eqnetrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → { 𝑧 ∈ 𝐼 ∣ ( 𝑙 ‘ 𝑧 ) ≠ 0 } ≠ ∅ ) |
| 219 |
|
rabn0 |
⊢ ( { 𝑧 ∈ 𝐼 ∣ ( 𝑙 ‘ 𝑧 ) ≠ 0 } ≠ ∅ ↔ ∃ 𝑧 ∈ 𝐼 ( 𝑙 ‘ 𝑧 ) ≠ 0 ) |
| 220 |
218 219
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → ∃ 𝑧 ∈ 𝐼 ( 𝑙 ‘ 𝑧 ) ≠ 0 ) |
| 221 |
202 220
|
reximddv |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → ∃ 𝑧 ∈ 𝐼 ∃ 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 222 |
|
rexcom |
⊢ ( ∃ 𝑧 ∈ 𝐼 ∃ 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ↔ ∃ 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∃ 𝑧 ∈ 𝐼 ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 223 |
221 222
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → ∃ 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∃ 𝑧 ∈ 𝐼 ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) |
| 224 |
|
simprr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ) ∧ ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) → 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) |
| 225 |
|
fvoveq1 |
⊢ ( ℎ = 𝑚 → ( ♯ ‘ ( ℎ supp 0 ) ) = ( ♯ ‘ ( 𝑚 supp 0 ) ) ) |
| 226 |
225
|
eqeq2d |
⊢ ( ℎ = 𝑚 → ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) ↔ 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ) ) |
| 227 |
|
eleq1w |
⊢ ( ℎ = 𝑚 → ( ℎ ∈ 𝐻 ↔ 𝑚 ∈ 𝐻 ) ) |
| 228 |
226 227
|
imbi12d |
⊢ ( ℎ = 𝑚 → ( ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ↔ ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) → 𝑚 ∈ 𝐻 ) ) ) |
| 229 |
228
|
rspccva |
⊢ ( ( ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ∧ 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) → 𝑚 ∈ 𝐻 ) ) |
| 230 |
229
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) → 𝑚 ∈ 𝐻 ) ) |
| 231 |
230
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ) → 𝑚 ∈ 𝐻 ) |
| 232 |
231
|
adantllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ) → 𝑚 ∈ 𝐻 ) |
| 233 |
232
|
adantlrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ) ∧ 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ) → 𝑚 ∈ 𝐻 ) |
| 234 |
233
|
adantrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ) ∧ ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) → 𝑚 ∈ 𝐻 ) |
| 235 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ) ∧ ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) → 𝑧 ∈ 𝐼 ) |
| 236 |
100
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ) ∧ ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) → 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 237 |
99 236 235
|
mapfvd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ) ∧ ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) → ( 𝑙 ‘ 𝑧 ) ∈ 𝐵 ) |
| 238 |
72
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ) ∧ ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) → ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐵 ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑎 , 𝑏 , 0 ) ) ∈ 𝐻 ) |
| 239 |
|
equequ2 |
⊢ ( 𝑎 = 𝑧 → ( 𝑥 = 𝑎 ↔ 𝑥 = 𝑧 ) ) |
| 240 |
239
|
ifbid |
⊢ ( 𝑎 = 𝑧 → if ( 𝑥 = 𝑎 , 𝑏 , 0 ) = if ( 𝑥 = 𝑧 , 𝑏 , 0 ) ) |
| 241 |
240
|
mpteq2dv |
⊢ ( 𝑎 = 𝑧 → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑎 , 𝑏 , 0 ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 𝑏 , 0 ) ) ) |
| 242 |
241
|
eleq1d |
⊢ ( 𝑎 = 𝑧 → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑎 , 𝑏 , 0 ) ) ∈ 𝐻 ↔ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 𝑏 , 0 ) ) ∈ 𝐻 ) ) |
| 243 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑙 ‘ 𝑥 ) = ( 𝑙 ‘ 𝑧 ) ) |
| 244 |
243
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑏 = ( 𝑙 ‘ 𝑥 ) ↔ 𝑏 = ( 𝑙 ‘ 𝑧 ) ) ) |
| 245 |
244
|
biimparc |
⊢ ( ( 𝑏 = ( 𝑙 ‘ 𝑧 ) ∧ 𝑥 = 𝑧 ) → 𝑏 = ( 𝑙 ‘ 𝑥 ) ) |
| 246 |
245
|
ifeq1da |
⊢ ( 𝑏 = ( 𝑙 ‘ 𝑧 ) → if ( 𝑥 = 𝑧 , 𝑏 , 0 ) = if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) |
| 247 |
246
|
mpteq2dv |
⊢ ( 𝑏 = ( 𝑙 ‘ 𝑧 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 𝑏 , 0 ) ) = ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) |
| 248 |
247
|
eleq1d |
⊢ ( 𝑏 = ( 𝑙 ‘ 𝑧 ) → ( ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , 𝑏 , 0 ) ) ∈ 𝐻 ↔ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) ) |
| 249 |
242 248
|
rspc2va |
⊢ ( ( ( 𝑧 ∈ 𝐼 ∧ ( 𝑙 ‘ 𝑧 ) ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐵 ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑎 , 𝑏 , 0 ) ) ∈ 𝐻 ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) |
| 250 |
235 237 238 249
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ) ∧ ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) → ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) |
| 251 |
8
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 ∘f + 𝑦 ) ∈ 𝐻 ) |
| 252 |
251
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ) ∧ ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) → ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 ∘f + 𝑦 ) ∈ 𝐻 ) |
| 253 |
|
ovrspc2v |
⊢ ( ( ( 𝑚 ∈ 𝐻 ∧ ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ∈ 𝐻 ) ∧ ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 ∘f + 𝑦 ) ∈ 𝐻 ) → ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ∈ 𝐻 ) |
| 254 |
234 250 252 253
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ) ∧ ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) → ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ∈ 𝐻 ) |
| 255 |
224 254
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ) ∧ ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) ) → 𝑙 ∈ 𝐻 ) |
| 256 |
255
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) ∧ ( 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ) → ( ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) → 𝑙 ∈ 𝐻 ) ) |
| 257 |
256
|
rexlimdvva |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → ( ∃ 𝑚 ∈ ( 𝐵 ↑m 𝐼 ) ∃ 𝑧 ∈ 𝐼 ( 𝑗 = ( ♯ ‘ ( 𝑚 supp 0 ) ) ∧ 𝑙 = ( 𝑚 ∘f + ( 𝑥 ∈ 𝐼 ↦ if ( 𝑥 = 𝑧 , ( 𝑙 ‘ 𝑥 ) , 0 ) ) ) ) → 𝑙 ∈ 𝐻 ) ) |
| 258 |
223 257
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ∧ ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ∧ ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ) ) → 𝑙 ∈ 𝐻 ) |
| 259 |
258
|
exp32 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) → ( 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) → ( ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) → 𝑙 ∈ 𝐻 ) ) ) |
| 260 |
259
|
ralrimiv |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) → ∀ 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ( ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) → 𝑙 ∈ 𝐻 ) ) |
| 261 |
|
fvoveq1 |
⊢ ( 𝑙 = ℎ → ( ♯ ‘ ( 𝑙 supp 0 ) ) = ( ♯ ‘ ( ℎ supp 0 ) ) ) |
| 262 |
261
|
eqeq2d |
⊢ ( 𝑙 = ℎ → ( ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) ↔ ( 𝑗 + 1 ) = ( ♯ ‘ ( ℎ supp 0 ) ) ) ) |
| 263 |
|
eleq1w |
⊢ ( 𝑙 = ℎ → ( 𝑙 ∈ 𝐻 ↔ ℎ ∈ 𝐻 ) ) |
| 264 |
262 263
|
imbi12d |
⊢ ( 𝑙 = ℎ → ( ( ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) → 𝑙 ∈ 𝐻 ) ↔ ( ( 𝑗 + 1 ) = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) ) |
| 265 |
264
|
cbvralvw |
⊢ ( ∀ 𝑙 ∈ ( 𝐵 ↑m 𝐼 ) ( ( 𝑗 + 1 ) = ( ♯ ‘ ( 𝑙 supp 0 ) ) → 𝑙 ∈ 𝐻 ) ↔ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( ( 𝑗 + 1 ) = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) |
| 266 |
260 265
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑗 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) → ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( ( 𝑗 + 1 ) = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) |
| 267 |
15 18 21 24 90 266
|
nnindd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑛 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) |
| 268 |
267
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑛 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) |
| 269 |
|
ralcom |
⊢ ( ∀ 𝑛 ∈ ℕ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( 𝑛 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ↔ ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ∀ 𝑛 ∈ ℕ ( 𝑛 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) |
| 270 |
268 269
|
sylib |
⊢ ( 𝜑 → ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ∀ 𝑛 ∈ ℕ ( 𝑛 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ) |
| 271 |
|
biidd |
⊢ ( 𝑛 = ( ♯ ‘ ( ℎ supp 0 ) ) → ( ℎ ∈ 𝐻 ↔ ℎ ∈ 𝐻 ) ) |
| 272 |
271
|
ceqsralv |
⊢ ( ( ♯ ‘ ( ℎ supp 0 ) ) ∈ ℕ → ( ∀ 𝑛 ∈ ℕ ( 𝑛 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) ↔ ℎ ∈ 𝐻 ) ) |
| 273 |
272
|
biimpcd |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝑛 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) → ( ( ♯ ‘ ( ℎ supp 0 ) ) ∈ ℕ → ℎ ∈ 𝐻 ) ) |
| 274 |
273
|
ralimi |
⊢ ( ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ∀ 𝑛 ∈ ℕ ( 𝑛 = ( ♯ ‘ ( ℎ supp 0 ) ) → ℎ ∈ 𝐻 ) → ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( ( ♯ ‘ ( ℎ supp 0 ) ) ∈ ℕ → ℎ ∈ 𝐻 ) ) |
| 275 |
270 274
|
syl |
⊢ ( 𝜑 → ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( ( ♯ ‘ ( ℎ supp 0 ) ) ∈ ℕ → ℎ ∈ 𝐻 ) ) |
| 276 |
|
fvoveq1 |
⊢ ( ℎ = 𝑋 → ( ♯ ‘ ( ℎ supp 0 ) ) = ( ♯ ‘ ( 𝑋 supp 0 ) ) ) |
| 277 |
276
|
eleq1d |
⊢ ( ℎ = 𝑋 → ( ( ♯ ‘ ( ℎ supp 0 ) ) ∈ ℕ ↔ ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ ) ) |
| 278 |
|
eleq1 |
⊢ ( ℎ = 𝑋 → ( ℎ ∈ 𝐻 ↔ 𝑋 ∈ 𝐻 ) ) |
| 279 |
277 278
|
imbi12d |
⊢ ( ℎ = 𝑋 → ( ( ( ♯ ‘ ( ℎ supp 0 ) ) ∈ ℕ → ℎ ∈ 𝐻 ) ↔ ( ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ → 𝑋 ∈ 𝐻 ) ) ) |
| 280 |
279
|
rspcv |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → ( ∀ ℎ ∈ ( 𝐵 ↑m 𝐼 ) ( ( ♯ ‘ ( ℎ supp 0 ) ) ∈ ℕ → ℎ ∈ 𝐻 ) → ( ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ → 𝑋 ∈ 𝐻 ) ) ) |
| 281 |
275 280
|
syl5com |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → ( ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ → 𝑋 ∈ 𝐻 ) ) ) |
| 282 |
281
|
com23 |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑋 ∈ 𝐻 ) ) ) |
| 283 |
282
|
imp |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ ) → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑋 ∈ 𝐻 ) ) |
| 284 |
12 283
|
sylbird |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ ) → ( 𝑋 : 𝐼 ⟶ 𝐵 → 𝑋 ∈ 𝐻 ) ) |
| 285 |
284
|
imp |
⊢ ( ( ( 𝜑 ∧ ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ ) ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) → 𝑋 ∈ 𝐻 ) |
| 286 |
285
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ ) → 𝑋 ∈ 𝐻 ) |
| 287 |
286
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) ∧ ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ ) → 𝑋 ∈ 𝐻 ) |
| 288 |
|
ovex |
⊢ ( 𝑋 supp 0 ) ∈ V |
| 289 |
|
hasheq0 |
⊢ ( ( 𝑋 supp 0 ) ∈ V → ( ( ♯ ‘ ( 𝑋 supp 0 ) ) = 0 ↔ ( 𝑋 supp 0 ) = ∅ ) ) |
| 290 |
288 289
|
ax-mp |
⊢ ( ( ♯ ‘ ( 𝑋 supp 0 ) ) = 0 ↔ ( 𝑋 supp 0 ) = ∅ ) |
| 291 |
|
ffn |
⊢ ( 𝑋 : 𝐼 ⟶ 𝐵 → 𝑋 Fn 𝐼 ) |
| 292 |
291
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) → 𝑋 Fn 𝐼 ) |
| 293 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) → 𝐼 ∈ 𝑉 ) |
| 294 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) → 0 ∈ V ) |
| 295 |
|
fnsuppeq0 |
⊢ ( ( 𝑋 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( ( 𝑋 supp 0 ) = ∅ ↔ 𝑋 = ( 𝐼 × { 0 } ) ) ) |
| 296 |
292 293 294 295
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) → ( ( 𝑋 supp 0 ) = ∅ ↔ 𝑋 = ( 𝐼 × { 0 } ) ) ) |
| 297 |
296
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) ∧ ( 𝑋 supp 0 ) = ∅ ) → 𝑋 = ( 𝐼 × { 0 } ) ) |
| 298 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) ∧ ( 𝑋 supp 0 ) = ∅ ) → ( 𝐼 × { 0 } ) ∈ 𝐻 ) |
| 299 |
297 298
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) ∧ ( 𝑋 supp 0 ) = ∅ ) → 𝑋 ∈ 𝐻 ) |
| 300 |
290 299
|
sylan2b |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) ∧ ( ♯ ‘ ( 𝑋 supp 0 ) ) = 0 ) → 𝑋 ∈ 𝐻 ) |
| 301 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) → 𝑋 finSupp 0 ) |
| 302 |
301
|
fsuppimpd |
⊢ ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) → ( 𝑋 supp 0 ) ∈ Fin ) |
| 303 |
|
hashcl |
⊢ ( ( 𝑋 supp 0 ) ∈ Fin → ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ0 ) |
| 304 |
302 303
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) → ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ0 ) |
| 305 |
|
elnn0 |
⊢ ( ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ0 ↔ ( ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ ∨ ( ♯ ‘ ( 𝑋 supp 0 ) ) = 0 ) ) |
| 306 |
304 305
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) → ( ( ♯ ‘ ( 𝑋 supp 0 ) ) ∈ ℕ ∨ ( ♯ ‘ ( 𝑋 supp 0 ) ) = 0 ) ) |
| 307 |
287 300 306
|
mpjaodan |
⊢ ( ( ( 𝜑 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) ∧ 𝑋 finSupp 0 ) → 𝑋 ∈ 𝐻 ) |
| 308 |
307
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑋 : 𝐼 ⟶ 𝐵 ∧ 𝑋 finSupp 0 ) ) → 𝑋 ∈ 𝐻 ) |