| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) |
| 2 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐶 , 𝐷 ) = 𝐶 ) |
| 3 |
1 2
|
oveq12d |
⊢ ( 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = ( 𝐴 𝐹 𝐶 ) ) |
| 4 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) = ( 𝐴 𝐹 𝐶 ) ) |
| 5 |
3 4
|
eqtr4d |
⊢ ( 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) ) |
| 6 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) |
| 7 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐶 , 𝐷 ) = 𝐷 ) |
| 8 |
6 7
|
oveq12d |
⊢ ( ¬ 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = ( 𝐵 𝐹 𝐷 ) ) |
| 9 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) = ( 𝐵 𝐹 𝐷 ) ) |
| 10 |
8 9
|
eqtr4d |
⊢ ( ¬ 𝜑 → ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) ) |
| 11 |
5 10
|
pm2.61i |
⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) 𝐹 if ( 𝜑 , 𝐶 , 𝐷 ) ) = if ( 𝜑 , ( 𝐴 𝐹 𝐶 ) , ( 𝐵 𝐹 𝐷 ) ) |