Step |
Hyp |
Ref |
Expression |
1 |
|
evlsaddval.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsaddval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) |
3 |
|
evlsaddval.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
evlsaddval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
5 |
|
evlsaddval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
6 |
|
evlsaddval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) |
7 |
|
evlsaddval.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
8 |
|
evlsaddval.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
9 |
|
evlsaddval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
10 |
|
evlsaddval.m |
⊢ ( 𝜑 → ( 𝑀 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) ) |
11 |
|
evlsexpval.g |
⊢ ∙ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
12 |
|
evlsexpval.f |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
13 |
|
evlsexpval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
14 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) |
15 |
1 2 3 14 4
|
evlsrhm |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
16 |
6 7 8 15
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
17 |
|
rhmrcl1 |
⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑃 ∈ Ring ) |
18 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
19 |
18
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
20 |
16 17 19
|
3syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
21 |
10
|
simpld |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
22 |
18 5
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
23 |
22 11
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑃 ) ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∙ 𝑀 ) ∈ 𝐵 ) |
24 |
20 13 21 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ∙ 𝑀 ) ∈ 𝐵 ) |
25 |
|
eqid |
⊢ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
26 |
1 2 18 11 3 14 25 4 5 6 7 8 13 21
|
evlspw |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑄 ‘ 𝑀 ) ) ) |
27 |
26
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝐴 ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑄 ‘ 𝑀 ) ) ‘ 𝐴 ) ) |
28 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
29 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
30 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
31 |
7
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
32 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) |
33 |
5 28
|
rhmf |
⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
34 |
16 33
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
35 |
34 21
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
36 |
14 28 25 29 30 12 31 32 13 35 9
|
pwsexpg |
⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑄 ‘ 𝑀 ) ) ‘ 𝐴 ) = ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) ) ) |
37 |
10
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) |
38 |
37
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) ) = ( 𝑁 ↑ 𝑉 ) ) |
39 |
27 36 38
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝐴 ) = ( 𝑁 ↑ 𝑉 ) ) |
40 |
24 39
|
jca |
⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑀 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝐴 ) = ( 𝑁 ↑ 𝑉 ) ) ) |