| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsaddval.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
| 2 |
|
evlsaddval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) |
| 3 |
|
evlsaddval.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 4 |
|
evlsaddval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 5 |
|
evlsaddval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 6 |
|
evlsaddval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) |
| 7 |
|
evlsaddval.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 8 |
|
evlsaddval.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 9 |
|
evlsaddval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 10 |
|
evlsaddval.m |
⊢ ( 𝜑 → ( 𝑀 ∈ 𝐵 ∧ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) ) |
| 11 |
|
evlsexpval.g |
⊢ ∙ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 12 |
|
evlsexpval.f |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 13 |
|
evlsexpval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 14 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 15 |
14 5
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 16 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) |
| 17 |
1 2 3 16 4
|
evlsrhm |
⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 18 |
6 7 8 17
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 19 |
|
rhmrcl1 |
⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑃 ∈ Ring ) |
| 20 |
14
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 21 |
18 19 20
|
3syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 22 |
10
|
simpld |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
| 23 |
15 11 21 13 22
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝑁 ∙ 𝑀 ) ∈ 𝐵 ) |
| 24 |
|
eqid |
⊢ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
| 25 |
1 2 14 11 3 16 24 4 5 6 7 8 13 22
|
evlspw |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑄 ‘ 𝑀 ) ) ) |
| 26 |
25
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝐴 ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑄 ‘ 𝑀 ) ) ‘ 𝐴 ) ) |
| 27 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
| 28 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
| 29 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 30 |
7
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 31 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) |
| 32 |
5 27
|
rhmf |
⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 33 |
18 32
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 34 |
33 22
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 35 |
16 27 24 28 29 12 30 31 13 34 9
|
pwsexpg |
⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑄 ‘ 𝑀 ) ) ‘ 𝐴 ) = ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) ) ) |
| 36 |
10
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) = 𝑉 ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐴 ) ) = ( 𝑁 ↑ 𝑉 ) ) |
| 38 |
26 35 37
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝐴 ) = ( 𝑁 ↑ 𝑉 ) ) |
| 39 |
23 38
|
jca |
⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑀 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝐴 ) = ( 𝑁 ↑ 𝑉 ) ) ) |