Step |
Hyp |
Ref |
Expression |
1 |
|
evlsbagval.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlsbagval.p |
|- P = ( I mPoly U ) |
3 |
|
evlsbagval.u |
|- U = ( S |`s R ) |
4 |
|
evlsbagval.w |
|- W = ( Base ` P ) |
5 |
|
evlsbagval.k |
|- K = ( Base ` S ) |
6 |
|
evlsbagval.m |
|- M = ( mulGrp ` S ) |
7 |
|
evlsbagval.e |
|- .^ = ( .g ` M ) |
8 |
|
evlsbagval.z |
|- .0. = ( 0g ` U ) |
9 |
|
evlsbagval.o |
|- .1. = ( 1r ` U ) |
10 |
|
evlsbagval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
11 |
|
evlsbagval.f |
|- F = ( s e. D |-> if ( s = B , .1. , .0. ) ) |
12 |
|
evlsbagval.i |
|- ( ph -> I e. V ) |
13 |
|
evlsbagval.s |
|- ( ph -> S e. CRing ) |
14 |
|
evlsbagval.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
15 |
|
evlsbagval.a |
|- ( ph -> A e. ( K ^m I ) ) |
16 |
|
evlsbagval.b |
|- ( ph -> B e. D ) |
17 |
|
fvexd |
|- ( ph -> ( Base ` U ) e. _V ) |
18 |
|
ovexd |
|- ( ph -> ( NN0 ^m I ) e. _V ) |
19 |
10 18
|
rabexd |
|- ( ph -> D e. _V ) |
20 |
3
|
subrgring |
|- ( R e. ( SubRing ` S ) -> U e. Ring ) |
21 |
14 20
|
syl |
|- ( ph -> U e. Ring ) |
22 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
23 |
22 9
|
ringidcl |
|- ( U e. Ring -> .1. e. ( Base ` U ) ) |
24 |
21 23
|
syl |
|- ( ph -> .1. e. ( Base ` U ) ) |
25 |
22 8
|
ring0cl |
|- ( U e. Ring -> .0. e. ( Base ` U ) ) |
26 |
21 25
|
syl |
|- ( ph -> .0. e. ( Base ` U ) ) |
27 |
24 26
|
ifcld |
|- ( ph -> if ( s = B , .1. , .0. ) e. ( Base ` U ) ) |
28 |
27
|
adantr |
|- ( ( ph /\ s e. D ) -> if ( s = B , .1. , .0. ) e. ( Base ` U ) ) |
29 |
28 11
|
fmptd |
|- ( ph -> F : D --> ( Base ` U ) ) |
30 |
17 19 29
|
elmapdd |
|- ( ph -> F e. ( ( Base ` U ) ^m D ) ) |
31 |
|
eqid |
|- ( I mPwSer U ) = ( I mPwSer U ) |
32 |
|
eqid |
|- ( Base ` ( I mPwSer U ) ) = ( Base ` ( I mPwSer U ) ) |
33 |
31 22 10 32 12
|
psrbas |
|- ( ph -> ( Base ` ( I mPwSer U ) ) = ( ( Base ` U ) ^m D ) ) |
34 |
30 33
|
eleqtrrd |
|- ( ph -> F e. ( Base ` ( I mPwSer U ) ) ) |
35 |
19 26 11
|
sniffsupp |
|- ( ph -> F finSupp .0. ) |
36 |
2 31 32 8 4
|
mplelbas |
|- ( F e. W <-> ( F e. ( Base ` ( I mPwSer U ) ) /\ F finSupp .0. ) ) |
37 |
34 35 36
|
sylanbrc |
|- ( ph -> F e. W ) |
38 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
39 |
1 2 4 3 10 5 6 7 38 12 13 14 37 15
|
evlsvvval |
|- ( ph -> ( ( Q ` F ) ` A ) = ( S gsum ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) ) |
40 |
16
|
snssd |
|- ( ph -> { B } C_ D ) |
41 |
|
resmpt |
|- ( { B } C_ D -> ( ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) |` { B } ) = ( b e. { B } |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) |
42 |
40 41
|
syl |
|- ( ph -> ( ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) |` { B } ) = ( b e. { B } |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) |
43 |
42
|
oveq2d |
|- ( ph -> ( S gsum ( ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) |` { B } ) ) = ( S gsum ( b e. { B } |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) ) |
44 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
45 |
13
|
crngringd |
|- ( ph -> S e. Ring ) |
46 |
45
|
ringcmnd |
|- ( ph -> S e. CMnd ) |
47 |
45
|
adantr |
|- ( ( ph /\ b e. D ) -> S e. Ring ) |
48 |
3
|
subrgbas |
|- ( R e. ( SubRing ` S ) -> R = ( Base ` U ) ) |
49 |
5
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ K ) |
50 |
48 49
|
eqsstrrd |
|- ( R e. ( SubRing ` S ) -> ( Base ` U ) C_ K ) |
51 |
14 50
|
syl |
|- ( ph -> ( Base ` U ) C_ K ) |
52 |
29 51
|
fssd |
|- ( ph -> F : D --> K ) |
53 |
52
|
ffvelcdmda |
|- ( ( ph /\ b e. D ) -> ( F ` b ) e. K ) |
54 |
12
|
adantr |
|- ( ( ph /\ b e. D ) -> I e. V ) |
55 |
13
|
adantr |
|- ( ( ph /\ b e. D ) -> S e. CRing ) |
56 |
15
|
adantr |
|- ( ( ph /\ b e. D ) -> A e. ( K ^m I ) ) |
57 |
|
simpr |
|- ( ( ph /\ b e. D ) -> b e. D ) |
58 |
10 5 6 7 54 55 56 57
|
evlsvvvallem |
|- ( ( ph /\ b e. D ) -> ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) e. K ) |
59 |
5 38 47 53 58
|
ringcld |
|- ( ( ph /\ b e. D ) -> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) e. K ) |
60 |
59
|
fmpttd |
|- ( ph -> ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) : D --> K ) |
61 |
|
eldifsnneq |
|- ( b e. ( D \ { B } ) -> -. b = B ) |
62 |
61
|
adantl |
|- ( ( ph /\ b e. ( D \ { B } ) ) -> -. b = B ) |
63 |
62
|
iffalsed |
|- ( ( ph /\ b e. ( D \ { B } ) ) -> if ( b = B , .1. , .0. ) = .0. ) |
64 |
|
eqeq1 |
|- ( s = b -> ( s = B <-> b = B ) ) |
65 |
64
|
ifbid |
|- ( s = b -> if ( s = B , .1. , .0. ) = if ( b = B , .1. , .0. ) ) |
66 |
|
eldifi |
|- ( b e. ( D \ { B } ) -> b e. D ) |
67 |
66
|
adantl |
|- ( ( ph /\ b e. ( D \ { B } ) ) -> b e. D ) |
68 |
9
|
fvexi |
|- .1. e. _V |
69 |
8
|
fvexi |
|- .0. e. _V |
70 |
68 69
|
ifex |
|- if ( b = B , .1. , .0. ) e. _V |
71 |
70
|
a1i |
|- ( ( ph /\ b e. ( D \ { B } ) ) -> if ( b = B , .1. , .0. ) e. _V ) |
72 |
11 65 67 71
|
fvmptd3 |
|- ( ( ph /\ b e. ( D \ { B } ) ) -> ( F ` b ) = if ( b = B , .1. , .0. ) ) |
73 |
3 44
|
subrg0 |
|- ( R e. ( SubRing ` S ) -> ( 0g ` S ) = ( 0g ` U ) ) |
74 |
73 8
|
eqtr4di |
|- ( R e. ( SubRing ` S ) -> ( 0g ` S ) = .0. ) |
75 |
14 74
|
syl |
|- ( ph -> ( 0g ` S ) = .0. ) |
76 |
75
|
adantr |
|- ( ( ph /\ b e. ( D \ { B } ) ) -> ( 0g ` S ) = .0. ) |
77 |
63 72 76
|
3eqtr4d |
|- ( ( ph /\ b e. ( D \ { B } ) ) -> ( F ` b ) = ( 0g ` S ) ) |
78 |
77
|
oveq1d |
|- ( ( ph /\ b e. ( D \ { B } ) ) -> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( ( 0g ` S ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) |
79 |
66 58
|
sylan2 |
|- ( ( ph /\ b e. ( D \ { B } ) ) -> ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) e. K ) |
80 |
5 38 44
|
ringlz |
|- ( ( S e. Ring /\ ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) e. K ) -> ( ( 0g ` S ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( 0g ` S ) ) |
81 |
45 79 80
|
syl2an2r |
|- ( ( ph /\ b e. ( D \ { B } ) ) -> ( ( 0g ` S ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( 0g ` S ) ) |
82 |
78 81
|
eqtrd |
|- ( ( ph /\ b e. ( D \ { B } ) ) -> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( 0g ` S ) ) |
83 |
82 19
|
suppss2 |
|- ( ph -> ( ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) supp ( 0g ` S ) ) C_ { B } ) |
84 |
10 2 3 4 5 6 7 38 12 13 14 37 15
|
evlsvvvallem2 |
|- ( ph -> ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) finSupp ( 0g ` S ) ) |
85 |
5 44 46 19 60 83 84
|
gsumres |
|- ( ph -> ( S gsum ( ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) |` { B } ) ) = ( S gsum ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) ) |
86 |
13
|
crnggrpd |
|- ( ph -> S e. Grp ) |
87 |
86
|
grpmndd |
|- ( ph -> S e. Mnd ) |
88 |
52 16
|
ffvelcdmd |
|- ( ph -> ( F ` B ) e. K ) |
89 |
10 5 6 7 12 13 15 16
|
evlsvvvallem |
|- ( ph -> ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) e. K ) |
90 |
5 38 45 88 89
|
ringcld |
|- ( ph -> ( ( F ` B ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) e. K ) |
91 |
|
fveq2 |
|- ( b = B -> ( F ` b ) = ( F ` B ) ) |
92 |
|
fveq1 |
|- ( b = B -> ( b ` v ) = ( B ` v ) ) |
93 |
92
|
oveq1d |
|- ( b = B -> ( ( b ` v ) .^ ( A ` v ) ) = ( ( B ` v ) .^ ( A ` v ) ) ) |
94 |
93
|
mpteq2dv |
|- ( b = B -> ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) = ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) |
95 |
94
|
oveq2d |
|- ( b = B -> ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) |
96 |
91 95
|
oveq12d |
|- ( b = B -> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( ( F ` B ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) ) |
97 |
5 96
|
gsumsn |
|- ( ( S e. Mnd /\ B e. D /\ ( ( F ` B ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) e. K ) -> ( S gsum ( b e. { B } |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) = ( ( F ` B ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) ) |
98 |
87 16 90 97
|
syl3anc |
|- ( ph -> ( S gsum ( b e. { B } |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) = ( ( F ` B ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) ) |
99 |
|
iftrue |
|- ( s = B -> if ( s = B , .1. , .0. ) = .1. ) |
100 |
68
|
a1i |
|- ( ph -> .1. e. _V ) |
101 |
11 99 16 100
|
fvmptd3 |
|- ( ph -> ( F ` B ) = .1. ) |
102 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
103 |
3 102
|
subrg1 |
|- ( R e. ( SubRing ` S ) -> ( 1r ` S ) = ( 1r ` U ) ) |
104 |
14 103
|
syl |
|- ( ph -> ( 1r ` S ) = ( 1r ` U ) ) |
105 |
9 101 104
|
3eqtr4a |
|- ( ph -> ( F ` B ) = ( 1r ` S ) ) |
106 |
105
|
oveq1d |
|- ( ph -> ( ( F ` B ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) = ( ( 1r ` S ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) ) |
107 |
5 38 102 45 89
|
ringlidmd |
|- ( ph -> ( ( 1r ` S ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) |
108 |
98 106 107
|
3eqtrd |
|- ( ph -> ( S gsum ( b e. { B } |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) |
109 |
43 85 108
|
3eqtr3d |
|- ( ph -> ( S gsum ( b e. D |-> ( ( F ` b ) ( .r ` S ) ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) |
110 |
39 109
|
eqtrd |
|- ( ph -> ( ( Q ` F ) ` A ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) |
111 |
37 110
|
jca |
|- ( ph -> ( F e. W /\ ( ( Q ` F ) ` A ) = ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) ) ) |