Step |
Hyp |
Ref |
Expression |
1 |
|
evlsvarval.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsvarval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) |
3 |
|
evlsvarval.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) |
4 |
|
evlsvarval.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
5 |
|
evlsvarval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
|
evlsvarval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
7 |
|
evlsvarval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
8 |
|
evlsvarval.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
9 |
|
evlsvarval.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
10 |
|
evlsvarval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
11 |
|
evlsvarval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
12 |
4
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
13 |
9 12
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
14 |
2 3 6 7 13 10
|
mvrcl |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ 𝐵 ) |
15 |
|
fveq1 |
⊢ ( 𝑔 = 𝐴 → ( 𝑔 ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ) |
16 |
1 3 4 5 7 8 9 10
|
evlsvar |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) = ( 𝑔 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑋 ) ) ) |
17 |
|
fvexd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ V ) |
18 |
15 16 11 17
|
fvmptd4 |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) ‘ 𝐴 ) = ( 𝐴 ‘ 𝑋 ) ) |
19 |
14 18
|
jca |
⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑉 ‘ 𝑋 ) ) ‘ 𝐴 ) = ( 𝐴 ‘ 𝑋 ) ) ) |