Metamath Proof Explorer


Theorem evlsvarval

Description: Polynomial evaluation builder for a variable. (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsvarval.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
evlsvarval.p 𝑃 = ( 𝐼 mPoly 𝑈 )
evlsvarval.v 𝑉 = ( 𝐼 mVar 𝑈 )
evlsvarval.u 𝑈 = ( 𝑆s 𝑅 )
evlsvarval.k 𝐾 = ( Base ‘ 𝑆 )
evlsvarval.b 𝐵 = ( Base ‘ 𝑃 )
evlsvarval.i ( 𝜑𝐼𝑊 )
evlsvarval.s ( 𝜑𝑆 ∈ CRing )
evlsvarval.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evlsvarval.x ( 𝜑𝑋𝐼 )
evlsvarval.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
Assertion evlsvarval ( 𝜑 → ( ( 𝑉𝑋 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑉𝑋 ) ) ‘ 𝐴 ) = ( 𝐴𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 evlsvarval.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 evlsvarval.p 𝑃 = ( 𝐼 mPoly 𝑈 )
3 evlsvarval.v 𝑉 = ( 𝐼 mVar 𝑈 )
4 evlsvarval.u 𝑈 = ( 𝑆s 𝑅 )
5 evlsvarval.k 𝐾 = ( Base ‘ 𝑆 )
6 evlsvarval.b 𝐵 = ( Base ‘ 𝑃 )
7 evlsvarval.i ( 𝜑𝐼𝑊 )
8 evlsvarval.s ( 𝜑𝑆 ∈ CRing )
9 evlsvarval.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
10 evlsvarval.x ( 𝜑𝑋𝐼 )
11 evlsvarval.a ( 𝜑𝐴 ∈ ( 𝐾m 𝐼 ) )
12 4 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
13 9 12 syl ( 𝜑𝑈 ∈ Ring )
14 2 3 6 7 13 10 mvrcl ( 𝜑 → ( 𝑉𝑋 ) ∈ 𝐵 )
15 fveq1 ( 𝑔 = 𝐴 → ( 𝑔𝑋 ) = ( 𝐴𝑋 ) )
16 1 3 4 5 7 8 9 10 evlsvar ( 𝜑 → ( 𝑄 ‘ ( 𝑉𝑋 ) ) = ( 𝑔 ∈ ( 𝐾m 𝐼 ) ↦ ( 𝑔𝑋 ) ) )
17 fvexd ( 𝜑 → ( 𝐴𝑋 ) ∈ V )
18 15 16 11 17 fvmptd4 ( 𝜑 → ( ( 𝑄 ‘ ( 𝑉𝑋 ) ) ‘ 𝐴 ) = ( 𝐴𝑋 ) )
19 14 18 jca ( 𝜑 → ( ( 𝑉𝑋 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝑉𝑋 ) ) ‘ 𝐴 ) = ( 𝐴𝑋 ) ) )