Step |
Hyp |
Ref |
Expression |
1 |
|
mhphflem.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
2 |
|
mhphflem.h |
|- H = { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } |
3 |
|
mhphflem.k |
|- B = ( Base ` G ) |
4 |
|
mhphflem.e |
|- .x. = ( .g ` G ) |
5 |
|
mhphflem.i |
|- ( ph -> I e. V ) |
6 |
|
mhphflem.g |
|- ( ph -> G e. Mnd ) |
7 |
|
mhphflem.l |
|- ( ph -> L e. B ) |
8 |
|
mhphflem.n |
|- ( ph -> N e. NN0 ) |
9 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
10 |
|
eqid |
|- ( CCfld |`s NN0 ) = ( CCfld |`s NN0 ) |
11 |
10
|
submbas |
|- ( NN0 e. ( SubMnd ` CCfld ) -> NN0 = ( Base ` ( CCfld |`s NN0 ) ) ) |
12 |
9 11
|
ax-mp |
|- NN0 = ( Base ` ( CCfld |`s NN0 ) ) |
13 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
14 |
10 13
|
subm0 |
|- ( NN0 e. ( SubMnd ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s NN0 ) ) ) |
15 |
9 14
|
ax-mp |
|- 0 = ( 0g ` ( CCfld |`s NN0 ) ) |
16 |
|
cnring |
|- CCfld e. Ring |
17 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
18 |
16 17
|
ax-mp |
|- CCfld e. CMnd |
19 |
10
|
submcmn |
|- ( ( CCfld e. CMnd /\ NN0 e. ( SubMnd ` CCfld ) ) -> ( CCfld |`s NN0 ) e. CMnd ) |
20 |
18 9 19
|
mp2an |
|- ( CCfld |`s NN0 ) e. CMnd |
21 |
20
|
a1i |
|- ( ( ph /\ a e. H ) -> ( CCfld |`s NN0 ) e. CMnd ) |
22 |
6
|
adantr |
|- ( ( ph /\ a e. H ) -> G e. Mnd ) |
23 |
5
|
adantr |
|- ( ( ph /\ a e. H ) -> I e. V ) |
24 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
25 |
10 24
|
ressplusg |
|- ( NN0 e. ( SubMnd ` CCfld ) -> + = ( +g ` ( CCfld |`s NN0 ) ) ) |
26 |
9 25
|
ax-mp |
|- + = ( +g ` ( CCfld |`s NN0 ) ) |
27 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
28 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
29 |
10
|
submmnd |
|- ( NN0 e. ( SubMnd ` CCfld ) -> ( CCfld |`s NN0 ) e. Mnd ) |
30 |
9 29
|
mp1i |
|- ( ( ph /\ a e. H ) -> ( CCfld |`s NN0 ) e. Mnd ) |
31 |
6
|
ad2antrr |
|- ( ( ( ph /\ a e. H ) /\ n e. NN0 ) -> G e. Mnd ) |
32 |
|
simpr |
|- ( ( ( ph /\ a e. H ) /\ n e. NN0 ) -> n e. NN0 ) |
33 |
7
|
ad2antrr |
|- ( ( ( ph /\ a e. H ) /\ n e. NN0 ) -> L e. B ) |
34 |
3 4
|
mulgnn0cl |
|- ( ( G e. Mnd /\ n e. NN0 /\ L e. B ) -> ( n .x. L ) e. B ) |
35 |
31 32 33 34
|
syl3anc |
|- ( ( ( ph /\ a e. H ) /\ n e. NN0 ) -> ( n .x. L ) e. B ) |
36 |
35
|
fmpttd |
|- ( ( ph /\ a e. H ) -> ( n e. NN0 |-> ( n .x. L ) ) : NN0 --> B ) |
37 |
6
|
ad2antrr |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> G e. Mnd ) |
38 |
|
simprl |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> x e. NN0 ) |
39 |
|
simprr |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> y e. NN0 ) |
40 |
7
|
ad2antrr |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> L e. B ) |
41 |
3 4 27
|
mulgnn0dir |
|- ( ( G e. Mnd /\ ( x e. NN0 /\ y e. NN0 /\ L e. B ) ) -> ( ( x + y ) .x. L ) = ( ( x .x. L ) ( +g ` G ) ( y .x. L ) ) ) |
42 |
37 38 39 40 41
|
syl13anc |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( ( x + y ) .x. L ) = ( ( x .x. L ) ( +g ` G ) ( y .x. L ) ) ) |
43 |
|
eqid |
|- ( n e. NN0 |-> ( n .x. L ) ) = ( n e. NN0 |-> ( n .x. L ) ) |
44 |
|
oveq1 |
|- ( n = ( x + y ) -> ( n .x. L ) = ( ( x + y ) .x. L ) ) |
45 |
|
nn0addcl |
|- ( ( x e. NN0 /\ y e. NN0 ) -> ( x + y ) e. NN0 ) |
46 |
45
|
adantl |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( x + y ) e. NN0 ) |
47 |
|
ovexd |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( ( x + y ) .x. L ) e. _V ) |
48 |
43 44 46 47
|
fvmptd3 |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( ( n e. NN0 |-> ( n .x. L ) ) ` ( x + y ) ) = ( ( x + y ) .x. L ) ) |
49 |
|
oveq1 |
|- ( n = x -> ( n .x. L ) = ( x .x. L ) ) |
50 |
|
ovexd |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( x .x. L ) e. _V ) |
51 |
43 49 38 50
|
fvmptd3 |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( ( n e. NN0 |-> ( n .x. L ) ) ` x ) = ( x .x. L ) ) |
52 |
|
oveq1 |
|- ( n = y -> ( n .x. L ) = ( y .x. L ) ) |
53 |
|
ovexd |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( y .x. L ) e. _V ) |
54 |
43 52 39 53
|
fvmptd3 |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( ( n e. NN0 |-> ( n .x. L ) ) ` y ) = ( y .x. L ) ) |
55 |
51 54
|
oveq12d |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( ( ( n e. NN0 |-> ( n .x. L ) ) ` x ) ( +g ` G ) ( ( n e. NN0 |-> ( n .x. L ) ) ` y ) ) = ( ( x .x. L ) ( +g ` G ) ( y .x. L ) ) ) |
56 |
42 48 55
|
3eqtr4d |
|- ( ( ( ph /\ a e. H ) /\ ( x e. NN0 /\ y e. NN0 ) ) -> ( ( n e. NN0 |-> ( n .x. L ) ) ` ( x + y ) ) = ( ( ( n e. NN0 |-> ( n .x. L ) ) ` x ) ( +g ` G ) ( ( n e. NN0 |-> ( n .x. L ) ) ` y ) ) ) |
57 |
|
oveq1 |
|- ( n = 0 -> ( n .x. L ) = ( 0 .x. L ) ) |
58 |
|
0nn0 |
|- 0 e. NN0 |
59 |
58
|
a1i |
|- ( ( ph /\ a e. H ) -> 0 e. NN0 ) |
60 |
|
ovexd |
|- ( ( ph /\ a e. H ) -> ( 0 .x. L ) e. _V ) |
61 |
43 57 59 60
|
fvmptd3 |
|- ( ( ph /\ a e. H ) -> ( ( n e. NN0 |-> ( n .x. L ) ) ` 0 ) = ( 0 .x. L ) ) |
62 |
7
|
adantr |
|- ( ( ph /\ a e. H ) -> L e. B ) |
63 |
3 28 4
|
mulg0 |
|- ( L e. B -> ( 0 .x. L ) = ( 0g ` G ) ) |
64 |
62 63
|
syl |
|- ( ( ph /\ a e. H ) -> ( 0 .x. L ) = ( 0g ` G ) ) |
65 |
61 64
|
eqtrd |
|- ( ( ph /\ a e. H ) -> ( ( n e. NN0 |-> ( n .x. L ) ) ` 0 ) = ( 0g ` G ) ) |
66 |
12 3 26 27 15 28 30 22 36 56 65
|
ismhmd |
|- ( ( ph /\ a e. H ) -> ( n e. NN0 |-> ( n .x. L ) ) e. ( ( CCfld |`s NN0 ) MndHom G ) ) |
67 |
|
elrabi |
|- ( a e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } -> a e. D ) |
68 |
67 2
|
eleq2s |
|- ( a e. H -> a e. D ) |
69 |
68
|
adantl |
|- ( ( ph /\ a e. H ) -> a e. D ) |
70 |
1
|
psrbagf |
|- ( a e. D -> a : I --> NN0 ) |
71 |
69 70
|
syl |
|- ( ( ph /\ a e. H ) -> a : I --> NN0 ) |
72 |
71
|
ffvelrnda |
|- ( ( ( ph /\ a e. H ) /\ v e. I ) -> ( a ` v ) e. NN0 ) |
73 |
71
|
feqmptd |
|- ( ( ph /\ a e. H ) -> a = ( v e. I |-> ( a ` v ) ) ) |
74 |
1
|
psrbagfsupp |
|- ( a e. D -> a finSupp 0 ) |
75 |
69 74
|
syl |
|- ( ( ph /\ a e. H ) -> a finSupp 0 ) |
76 |
73 75
|
eqbrtrrd |
|- ( ( ph /\ a e. H ) -> ( v e. I |-> ( a ` v ) ) finSupp 0 ) |
77 |
|
oveq1 |
|- ( n = ( a ` v ) -> ( n .x. L ) = ( ( a ` v ) .x. L ) ) |
78 |
|
oveq1 |
|- ( n = ( ( CCfld |`s NN0 ) gsum ( v e. I |-> ( a ` v ) ) ) -> ( n .x. L ) = ( ( ( CCfld |`s NN0 ) gsum ( v e. I |-> ( a ` v ) ) ) .x. L ) ) |
79 |
12 15 21 22 23 66 72 76 77 78
|
gsummhm2 |
|- ( ( ph /\ a e. H ) -> ( G gsum ( v e. I |-> ( ( a ` v ) .x. L ) ) ) = ( ( ( CCfld |`s NN0 ) gsum ( v e. I |-> ( a ` v ) ) ) .x. L ) ) |
80 |
73
|
oveq2d |
|- ( ( ph /\ a e. H ) -> ( ( CCfld |`s NN0 ) gsum a ) = ( ( CCfld |`s NN0 ) gsum ( v e. I |-> ( a ` v ) ) ) ) |
81 |
|
oveq2 |
|- ( g = a -> ( ( CCfld |`s NN0 ) gsum g ) = ( ( CCfld |`s NN0 ) gsum a ) ) |
82 |
81
|
eqeq1d |
|- ( g = a -> ( ( ( CCfld |`s NN0 ) gsum g ) = N <-> ( ( CCfld |`s NN0 ) gsum a ) = N ) ) |
83 |
82 2
|
elrab2 |
|- ( a e. H <-> ( a e. D /\ ( ( CCfld |`s NN0 ) gsum a ) = N ) ) |
84 |
83
|
simprbi |
|- ( a e. H -> ( ( CCfld |`s NN0 ) gsum a ) = N ) |
85 |
84
|
adantl |
|- ( ( ph /\ a e. H ) -> ( ( CCfld |`s NN0 ) gsum a ) = N ) |
86 |
80 85
|
eqtr3d |
|- ( ( ph /\ a e. H ) -> ( ( CCfld |`s NN0 ) gsum ( v e. I |-> ( a ` v ) ) ) = N ) |
87 |
86
|
oveq1d |
|- ( ( ph /\ a e. H ) -> ( ( ( CCfld |`s NN0 ) gsum ( v e. I |-> ( a ` v ) ) ) .x. L ) = ( N .x. L ) ) |
88 |
79 87
|
eqtrd |
|- ( ( ph /\ a e. H ) -> ( G gsum ( v e. I |-> ( ( a ` v ) .x. L ) ) ) = ( N .x. L ) ) |