Step |
Hyp |
Ref |
Expression |
1 |
|
mhphflem.d |
|
2 |
|
mhphflem.h |
|
3 |
|
mhphflem.k |
|
4 |
|
mhphflem.e |
|
5 |
|
mhphflem.i |
|
6 |
|
mhphflem.g |
|
7 |
|
mhphflem.l |
|
8 |
|
mhphflem.n |
|
9 |
|
nn0subm |
|
10 |
|
eqid |
|
11 |
10
|
submbas |
|
12 |
9 11
|
ax-mp |
|
13 |
|
cnfld0 |
|
14 |
10 13
|
subm0 |
|
15 |
9 14
|
ax-mp |
|
16 |
|
cnring |
|
17 |
|
ringcmn |
|
18 |
16 17
|
ax-mp |
|
19 |
10
|
submcmn |
|
20 |
18 9 19
|
mp2an |
|
21 |
20
|
a1i |
|
22 |
6
|
adantr |
|
23 |
5
|
adantr |
|
24 |
|
cnfldadd |
|
25 |
10 24
|
ressplusg |
|
26 |
9 25
|
ax-mp |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
10
|
submmnd |
|
30 |
9 29
|
mp1i |
|
31 |
6
|
ad2antrr |
|
32 |
|
simpr |
|
33 |
7
|
ad2antrr |
|
34 |
3 4
|
mulgnn0cl |
|
35 |
31 32 33 34
|
syl3anc |
|
36 |
35
|
fmpttd |
|
37 |
6
|
ad2antrr |
|
38 |
|
simprl |
|
39 |
|
simprr |
|
40 |
7
|
ad2antrr |
|
41 |
3 4 27
|
mulgnn0dir |
|
42 |
37 38 39 40 41
|
syl13anc |
|
43 |
|
eqid |
|
44 |
|
oveq1 |
|
45 |
|
nn0addcl |
|
46 |
45
|
adantl |
|
47 |
|
ovexd |
|
48 |
43 44 46 47
|
fvmptd3 |
|
49 |
|
oveq1 |
|
50 |
|
ovexd |
|
51 |
43 49 38 50
|
fvmptd3 |
|
52 |
|
oveq1 |
|
53 |
|
ovexd |
|
54 |
43 52 39 53
|
fvmptd3 |
|
55 |
51 54
|
oveq12d |
|
56 |
42 48 55
|
3eqtr4d |
|
57 |
|
oveq1 |
|
58 |
|
0nn0 |
|
59 |
58
|
a1i |
|
60 |
|
ovexd |
|
61 |
43 57 59 60
|
fvmptd3 |
|
62 |
7
|
adantr |
|
63 |
3 28 4
|
mulg0 |
|
64 |
62 63
|
syl |
|
65 |
61 64
|
eqtrd |
|
66 |
12 3 26 27 15 28 30 22 36 56 65
|
ismhmd |
|
67 |
|
elrabi |
|
68 |
67 2
|
eleq2s |
|
69 |
68
|
adantl |
|
70 |
1
|
psrbagf |
|
71 |
69 70
|
syl |
|
72 |
71
|
ffvelrnda |
|
73 |
71
|
feqmptd |
|
74 |
1
|
psrbagfsupp |
|
75 |
69 74
|
syl |
|
76 |
73 75
|
eqbrtrrd |
|
77 |
|
oveq1 |
|
78 |
|
oveq1 |
|
79 |
12 15 21 22 23 66 72 76 77 78
|
gsummhm2 |
|
80 |
73
|
oveq2d |
|
81 |
|
oveq2 |
|
82 |
81
|
eqeq1d |
|
83 |
82 2
|
elrab2 |
|
84 |
83
|
simprbi |
|
85 |
84
|
adantl |
|
86 |
80 85
|
eqtr3d |
|
87 |
86
|
oveq1d |
|
88 |
79 87
|
eqtrd |
|