Metamath Proof Explorer


Theorem mhphflem

Description: Lemma for mhphf . Add several multiples of L together, in a case where the total amount of multiplies is N . (Contributed by SN, 30-Jul-2024)

Ref Expression
Hypotheses mhphflem.d D = h 0 I | h -1 Fin
mhphflem.h H = g D | fld 𝑠 0 g = N
mhphflem.k B = Base G
mhphflem.e · ˙ = G
mhphflem.i φ I V
mhphflem.g φ G Mnd
mhphflem.l φ L B
mhphflem.n φ N 0
Assertion mhphflem φ a H G v I a v · ˙ L = N · ˙ L

Proof

Step Hyp Ref Expression
1 mhphflem.d D = h 0 I | h -1 Fin
2 mhphflem.h H = g D | fld 𝑠 0 g = N
3 mhphflem.k B = Base G
4 mhphflem.e · ˙ = G
5 mhphflem.i φ I V
6 mhphflem.g φ G Mnd
7 mhphflem.l φ L B
8 mhphflem.n φ N 0
9 nn0subm 0 SubMnd fld
10 eqid fld 𝑠 0 = fld 𝑠 0
11 10 submbas 0 SubMnd fld 0 = Base fld 𝑠 0
12 9 11 ax-mp 0 = Base fld 𝑠 0
13 cnfld0 0 = 0 fld
14 10 13 subm0 0 SubMnd fld 0 = 0 fld 𝑠 0
15 9 14 ax-mp 0 = 0 fld 𝑠 0
16 cnring fld Ring
17 ringcmn fld Ring fld CMnd
18 16 17 ax-mp fld CMnd
19 10 submcmn fld CMnd 0 SubMnd fld fld 𝑠 0 CMnd
20 18 9 19 mp2an fld 𝑠 0 CMnd
21 20 a1i φ a H fld 𝑠 0 CMnd
22 6 adantr φ a H G Mnd
23 5 adantr φ a H I V
24 cnfldadd + = + fld
25 10 24 ressplusg 0 SubMnd fld + = + fld 𝑠 0
26 9 25 ax-mp + = + fld 𝑠 0
27 eqid + G = + G
28 eqid 0 G = 0 G
29 10 submmnd 0 SubMnd fld fld 𝑠 0 Mnd
30 9 29 mp1i φ a H fld 𝑠 0 Mnd
31 6 ad2antrr φ a H n 0 G Mnd
32 simpr φ a H n 0 n 0
33 7 ad2antrr φ a H n 0 L B
34 3 4 mulgnn0cl G Mnd n 0 L B n · ˙ L B
35 31 32 33 34 syl3anc φ a H n 0 n · ˙ L B
36 35 fmpttd φ a H n 0 n · ˙ L : 0 B
37 6 ad2antrr φ a H x 0 y 0 G Mnd
38 simprl φ a H x 0 y 0 x 0
39 simprr φ a H x 0 y 0 y 0
40 7 ad2antrr φ a H x 0 y 0 L B
41 3 4 27 mulgnn0dir G Mnd x 0 y 0 L B x + y · ˙ L = x · ˙ L + G y · ˙ L
42 37 38 39 40 41 syl13anc φ a H x 0 y 0 x + y · ˙ L = x · ˙ L + G y · ˙ L
43 eqid n 0 n · ˙ L = n 0 n · ˙ L
44 oveq1 n = x + y n · ˙ L = x + y · ˙ L
45 nn0addcl x 0 y 0 x + y 0
46 45 adantl φ a H x 0 y 0 x + y 0
47 ovexd φ a H x 0 y 0 x + y · ˙ L V
48 43 44 46 47 fvmptd3 φ a H x 0 y 0 n 0 n · ˙ L x + y = x + y · ˙ L
49 oveq1 n = x n · ˙ L = x · ˙ L
50 ovexd φ a H x 0 y 0 x · ˙ L V
51 43 49 38 50 fvmptd3 φ a H x 0 y 0 n 0 n · ˙ L x = x · ˙ L
52 oveq1 n = y n · ˙ L = y · ˙ L
53 ovexd φ a H x 0 y 0 y · ˙ L V
54 43 52 39 53 fvmptd3 φ a H x 0 y 0 n 0 n · ˙ L y = y · ˙ L
55 51 54 oveq12d φ a H x 0 y 0 n 0 n · ˙ L x + G n 0 n · ˙ L y = x · ˙ L + G y · ˙ L
56 42 48 55 3eqtr4d φ a H x 0 y 0 n 0 n · ˙ L x + y = n 0 n · ˙ L x + G n 0 n · ˙ L y
57 oveq1 n = 0 n · ˙ L = 0 · ˙ L
58 0nn0 0 0
59 58 a1i φ a H 0 0
60 ovexd φ a H 0 · ˙ L V
61 43 57 59 60 fvmptd3 φ a H n 0 n · ˙ L 0 = 0 · ˙ L
62 7 adantr φ a H L B
63 3 28 4 mulg0 L B 0 · ˙ L = 0 G
64 62 63 syl φ a H 0 · ˙ L = 0 G
65 61 64 eqtrd φ a H n 0 n · ˙ L 0 = 0 G
66 12 3 26 27 15 28 30 22 36 56 65 ismhmd φ a H n 0 n · ˙ L fld 𝑠 0 MndHom G
67 elrabi a g D | fld 𝑠 0 g = N a D
68 67 2 eleq2s a H a D
69 68 adantl φ a H a D
70 1 psrbagf a D a : I 0
71 69 70 syl φ a H a : I 0
72 71 ffvelrnda φ a H v I a v 0
73 71 feqmptd φ a H a = v I a v
74 1 psrbagfsupp a D finSupp 0 a
75 69 74 syl φ a H finSupp 0 a
76 73 75 eqbrtrrd φ a H finSupp 0 v I a v
77 oveq1 n = a v n · ˙ L = a v · ˙ L
78 oveq1 n = fld 𝑠 0 v I a v n · ˙ L = fld 𝑠 0 v I a v · ˙ L
79 12 15 21 22 23 66 72 76 77 78 gsummhm2 φ a H G v I a v · ˙ L = fld 𝑠 0 v I a v · ˙ L
80 73 oveq2d φ a H fld 𝑠 0 a = fld 𝑠 0 v I a v
81 oveq2 g = a fld 𝑠 0 g = fld 𝑠 0 a
82 81 eqeq1d g = a fld 𝑠 0 g = N fld 𝑠 0 a = N
83 82 2 elrab2 a H a D fld 𝑠 0 a = N
84 83 simprbi a H fld 𝑠 0 a = N
85 84 adantl φ a H fld 𝑠 0 a = N
86 80 85 eqtr3d φ a H fld 𝑠 0 v I a v = N
87 86 oveq1d φ a H fld 𝑠 0 v I a v · ˙ L = N · ˙ L
88 79 87 eqtrd φ a H G v I a v · ˙ L = N · ˙ L