| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhphflem.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 2 |
|
mhphflem.h |
⊢ 𝐻 = { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } |
| 3 |
|
mhphflem.k |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 4 |
|
mhphflem.e |
⊢ · = ( .g ‘ 𝐺 ) |
| 5 |
|
mhphflem.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
mhphflem.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 7 |
|
mhphflem.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝐵 ) |
| 8 |
|
mhphflem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 9 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
| 10 |
|
eqid |
⊢ ( ℂfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
| 11 |
10
|
submbas |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 12 |
9 11
|
ax-mp |
⊢ ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) |
| 13 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 14 |
10 13
|
subm0 |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 15 |
9 14
|
ax-mp |
⊢ 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) |
| 16 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 17 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
| 18 |
16 17
|
ax-mp |
⊢ ℂfld ∈ CMnd |
| 19 |
10
|
submcmn |
⊢ ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂfld ↾s ℕ0 ) ∈ CMnd ) |
| 20 |
18 9 19
|
mp2an |
⊢ ( ℂfld ↾s ℕ0 ) ∈ CMnd |
| 21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ℂfld ↾s ℕ0 ) ∈ CMnd ) |
| 22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝐺 ∈ Mnd ) |
| 23 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝐼 ∈ 𝑉 ) |
| 24 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 25 |
10 24
|
ressplusg |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 26 |
9 25
|
ax-mp |
⊢ + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) |
| 27 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 28 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 29 |
10
|
submmnd |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ( ℂfld ↾s ℕ0 ) ∈ Mnd ) |
| 30 |
9 29
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ℂfld ↾s ℕ0 ) ∈ Mnd ) |
| 31 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
| 32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 33 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐿 ∈ 𝐵 ) |
| 34 |
3 4 31 32 33
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 · 𝐿 ) ∈ 𝐵 ) |
| 35 |
34
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) : ℕ0 ⟶ 𝐵 ) |
| 36 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → 𝐺 ∈ Mnd ) |
| 37 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → 𝑥 ∈ ℕ0 ) |
| 38 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → 𝑦 ∈ ℕ0 ) |
| 39 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → 𝐿 ∈ 𝐵 ) |
| 40 |
3 4 27
|
mulgnn0dir |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝐿 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐿 ) = ( ( 𝑥 · 𝐿 ) ( +g ‘ 𝐺 ) ( 𝑦 · 𝐿 ) ) ) |
| 41 |
36 37 38 39 40
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐿 ) = ( ( 𝑥 · 𝐿 ) ( +g ‘ 𝐺 ) ( 𝑦 · 𝐿 ) ) ) |
| 42 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) |
| 43 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑥 + 𝑦 ) → ( 𝑛 · 𝐿 ) = ( ( 𝑥 + 𝑦 ) · 𝐿 ) ) |
| 44 |
|
nn0addcl |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 + 𝑦 ) ∈ ℕ0 ) |
| 45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( 𝑥 + 𝑦 ) ∈ ℕ0 ) |
| 46 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐿 ) ∈ V ) |
| 47 |
42 43 45 46
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑥 + 𝑦 ) · 𝐿 ) ) |
| 48 |
|
oveq1 |
⊢ ( 𝑛 = 𝑥 → ( 𝑛 · 𝐿 ) = ( 𝑥 · 𝐿 ) ) |
| 49 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( 𝑥 · 𝐿 ) ∈ V ) |
| 50 |
42 48 37 49
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑥 ) = ( 𝑥 · 𝐿 ) ) |
| 51 |
|
oveq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 · 𝐿 ) = ( 𝑦 · 𝐿 ) ) |
| 52 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( 𝑦 · 𝐿 ) ∈ V ) |
| 53 |
42 51 38 52
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑦 ) = ( 𝑦 · 𝐿 ) ) |
| 54 |
50 53
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑦 ) ) = ( ( 𝑥 · 𝐿 ) ( +g ‘ 𝐺 ) ( 𝑦 · 𝐿 ) ) ) |
| 55 |
41 47 54
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑦 ) ) ) |
| 56 |
|
oveq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 · 𝐿 ) = ( 0 · 𝐿 ) ) |
| 57 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 58 |
57
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 0 ∈ ℕ0 ) |
| 59 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 0 · 𝐿 ) ∈ V ) |
| 60 |
42 56 58 59
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 0 ) = ( 0 · 𝐿 ) ) |
| 61 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝐿 ∈ 𝐵 ) |
| 62 |
3 28 4
|
mulg0 |
⊢ ( 𝐿 ∈ 𝐵 → ( 0 · 𝐿 ) = ( 0g ‘ 𝐺 ) ) |
| 63 |
61 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 0 · 𝐿 ) = ( 0g ‘ 𝐺 ) ) |
| 64 |
60 63
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 0 ) = ( 0g ‘ 𝐺 ) ) |
| 65 |
12 3 26 27 15 28 30 22 35 55 64
|
ismhmd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ∈ ( ( ℂfld ↾s ℕ0 ) MndHom 𝐺 ) ) |
| 66 |
|
elrabi |
⊢ ( 𝑎 ∈ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑎 ∈ 𝐷 ) |
| 67 |
66 2
|
eleq2s |
⊢ ( 𝑎 ∈ 𝐻 → 𝑎 ∈ 𝐷 ) |
| 68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝑎 ∈ 𝐷 ) |
| 69 |
1
|
psrbagf |
⊢ ( 𝑎 ∈ 𝐷 → 𝑎 : 𝐼 ⟶ ℕ0 ) |
| 70 |
68 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝑎 : 𝐼 ⟶ ℕ0 ) |
| 71 |
70
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑣 ) ∈ ℕ0 ) |
| 72 |
70
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝑎 = ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) |
| 73 |
1
|
psrbagfsupp |
⊢ ( 𝑎 ∈ 𝐷 → 𝑎 finSupp 0 ) |
| 74 |
68 73
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝑎 finSupp 0 ) |
| 75 |
72 74
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) finSupp 0 ) |
| 76 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑎 ‘ 𝑣 ) → ( 𝑛 · 𝐿 ) = ( ( 𝑎 ‘ 𝑣 ) · 𝐿 ) ) |
| 77 |
|
oveq1 |
⊢ ( 𝑛 = ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) → ( 𝑛 · 𝐿 ) = ( ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) · 𝐿 ) ) |
| 78 |
12 15 21 22 23 65 71 75 76 77
|
gsummhm2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 𝐺 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) · 𝐿 ) ) ) = ( ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) · 𝐿 ) ) |
| 79 |
72
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑎 ) = ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) ) |
| 80 |
|
oveq2 |
⊢ ( 𝑔 = 𝑎 → ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = ( ( ℂfld ↾s ℕ0 ) Σg 𝑎 ) ) |
| 81 |
80
|
eqeq1d |
⊢ ( 𝑔 = 𝑎 → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 ↔ ( ( ℂfld ↾s ℕ0 ) Σg 𝑎 ) = 𝑁 ) ) |
| 82 |
81 2
|
elrab2 |
⊢ ( 𝑎 ∈ 𝐻 ↔ ( 𝑎 ∈ 𝐷 ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑎 ) = 𝑁 ) ) |
| 83 |
82
|
simprbi |
⊢ ( 𝑎 ∈ 𝐻 → ( ( ℂfld ↾s ℕ0 ) Σg 𝑎 ) = 𝑁 ) |
| 84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑎 ) = 𝑁 ) |
| 85 |
79 84
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) = 𝑁 ) |
| 86 |
85
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) · 𝐿 ) = ( 𝑁 · 𝐿 ) ) |
| 87 |
78 86
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 𝐺 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) · 𝐿 ) ) ) = ( 𝑁 · 𝐿 ) ) |