Step |
Hyp |
Ref |
Expression |
1 |
|
mhphflem.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
2 |
|
mhphflem.h |
⊢ 𝐻 = { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } |
3 |
|
mhphflem.k |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
4 |
|
mhphflem.e |
⊢ · = ( .g ‘ 𝐺 ) |
5 |
|
mhphflem.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
6 |
|
mhphflem.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
7 |
|
mhphflem.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝐵 ) |
8 |
|
mhphflem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
9 |
|
nn0subm |
⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) |
10 |
|
eqid |
⊢ ( ℂfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) |
11 |
10
|
submbas |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) ) |
12 |
9 11
|
ax-mp |
⊢ ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) |
13 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
14 |
10 13
|
subm0 |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
15 |
9 14
|
ax-mp |
⊢ 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) |
16 |
|
cnring |
⊢ ℂfld ∈ Ring |
17 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
18 |
16 17
|
ax-mp |
⊢ ℂfld ∈ CMnd |
19 |
10
|
submcmn |
⊢ ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂfld ↾s ℕ0 ) ∈ CMnd ) |
20 |
18 9 19
|
mp2an |
⊢ ( ℂfld ↾s ℕ0 ) ∈ CMnd |
21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ℂfld ↾s ℕ0 ) ∈ CMnd ) |
22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝐺 ∈ Mnd ) |
23 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝐼 ∈ 𝑉 ) |
24 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
25 |
10 24
|
ressplusg |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
26 |
9 25
|
ax-mp |
⊢ + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) |
27 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
28 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
29 |
10
|
submmnd |
⊢ ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ( ℂfld ↾s ℕ0 ) ∈ Mnd ) |
30 |
9 29
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ℂfld ↾s ℕ0 ) ∈ Mnd ) |
31 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
33 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐿 ∈ 𝐵 ) |
34 |
3 4
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝐿 ∈ 𝐵 ) → ( 𝑛 · 𝐿 ) ∈ 𝐵 ) |
35 |
31 32 33 34
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 · 𝐿 ) ∈ 𝐵 ) |
36 |
35
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) : ℕ0 ⟶ 𝐵 ) |
37 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → 𝐺 ∈ Mnd ) |
38 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → 𝑥 ∈ ℕ0 ) |
39 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → 𝑦 ∈ ℕ0 ) |
40 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → 𝐿 ∈ 𝐵 ) |
41 |
3 4 27
|
mulgnn0dir |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝐿 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐿 ) = ( ( 𝑥 · 𝐿 ) ( +g ‘ 𝐺 ) ( 𝑦 · 𝐿 ) ) ) |
42 |
37 38 39 40 41
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐿 ) = ( ( 𝑥 · 𝐿 ) ( +g ‘ 𝐺 ) ( 𝑦 · 𝐿 ) ) ) |
43 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) |
44 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑥 + 𝑦 ) → ( 𝑛 · 𝐿 ) = ( ( 𝑥 + 𝑦 ) · 𝐿 ) ) |
45 |
|
nn0addcl |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 + 𝑦 ) ∈ ℕ0 ) |
46 |
45
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( 𝑥 + 𝑦 ) ∈ ℕ0 ) |
47 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐿 ) ∈ V ) |
48 |
43 44 46 47
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑥 + 𝑦 ) · 𝐿 ) ) |
49 |
|
oveq1 |
⊢ ( 𝑛 = 𝑥 → ( 𝑛 · 𝐿 ) = ( 𝑥 · 𝐿 ) ) |
50 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( 𝑥 · 𝐿 ) ∈ V ) |
51 |
43 49 38 50
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑥 ) = ( 𝑥 · 𝐿 ) ) |
52 |
|
oveq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 · 𝐿 ) = ( 𝑦 · 𝐿 ) ) |
53 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( 𝑦 · 𝐿 ) ∈ V ) |
54 |
43 52 39 53
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑦 ) = ( 𝑦 · 𝐿 ) ) |
55 |
51 54
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑦 ) ) = ( ( 𝑥 · 𝐿 ) ( +g ‘ 𝐺 ) ( 𝑦 · 𝐿 ) ) ) |
56 |
42 48 55
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑦 ) ) ) |
57 |
|
oveq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 · 𝐿 ) = ( 0 · 𝐿 ) ) |
58 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
59 |
58
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 0 ∈ ℕ0 ) |
60 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 0 · 𝐿 ) ∈ V ) |
61 |
43 57 59 60
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 0 ) = ( 0 · 𝐿 ) ) |
62 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝐿 ∈ 𝐵 ) |
63 |
3 28 4
|
mulg0 |
⊢ ( 𝐿 ∈ 𝐵 → ( 0 · 𝐿 ) = ( 0g ‘ 𝐺 ) ) |
64 |
62 63
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 0 · 𝐿 ) = ( 0g ‘ 𝐺 ) ) |
65 |
61 64
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 0 ) = ( 0g ‘ 𝐺 ) ) |
66 |
12 3 26 27 15 28 30 22 36 56 65
|
ismhmd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ∈ ( ( ℂfld ↾s ℕ0 ) MndHom 𝐺 ) ) |
67 |
|
elrabi |
⊢ ( 𝑎 ∈ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑎 ∈ 𝐷 ) |
68 |
67 2
|
eleq2s |
⊢ ( 𝑎 ∈ 𝐻 → 𝑎 ∈ 𝐷 ) |
69 |
68
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝑎 ∈ 𝐷 ) |
70 |
1
|
psrbagf |
⊢ ( 𝑎 ∈ 𝐷 → 𝑎 : 𝐼 ⟶ ℕ0 ) |
71 |
69 70
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝑎 : 𝐼 ⟶ ℕ0 ) |
72 |
71
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑣 ) ∈ ℕ0 ) |
73 |
71
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝑎 = ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) |
74 |
1
|
psrbagfsupp |
⊢ ( 𝑎 ∈ 𝐷 → 𝑎 finSupp 0 ) |
75 |
69 74
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝑎 finSupp 0 ) |
76 |
73 75
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) finSupp 0 ) |
77 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑎 ‘ 𝑣 ) → ( 𝑛 · 𝐿 ) = ( ( 𝑎 ‘ 𝑣 ) · 𝐿 ) ) |
78 |
|
oveq1 |
⊢ ( 𝑛 = ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) → ( 𝑛 · 𝐿 ) = ( ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) · 𝐿 ) ) |
79 |
12 15 21 22 23 66 72 76 77 78
|
gsummhm2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 𝐺 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) · 𝐿 ) ) ) = ( ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) · 𝐿 ) ) |
80 |
73
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑎 ) = ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) ) |
81 |
|
oveq2 |
⊢ ( 𝑔 = 𝑎 → ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = ( ( ℂfld ↾s ℕ0 ) Σg 𝑎 ) ) |
82 |
81
|
eqeq1d |
⊢ ( 𝑔 = 𝑎 → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 ↔ ( ( ℂfld ↾s ℕ0 ) Σg 𝑎 ) = 𝑁 ) ) |
83 |
82 2
|
elrab2 |
⊢ ( 𝑎 ∈ 𝐻 ↔ ( 𝑎 ∈ 𝐷 ∧ ( ( ℂfld ↾s ℕ0 ) Σg 𝑎 ) = 𝑁 ) ) |
84 |
83
|
simprbi |
⊢ ( 𝑎 ∈ 𝐻 → ( ( ℂfld ↾s ℕ0 ) Σg 𝑎 ) = 𝑁 ) |
85 |
84
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( ℂfld ↾s ℕ0 ) Σg 𝑎 ) = 𝑁 ) |
86 |
80 85
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) = 𝑁 ) |
87 |
86
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( ( ℂfld ↾s ℕ0 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) · 𝐿 ) = ( 𝑁 · 𝐿 ) ) |
88 |
79 87
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 𝐺 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) · 𝐿 ) ) ) = ( 𝑁 · 𝐿 ) ) |