Metamath Proof Explorer


Theorem mhphflem

Description: Lemma for mhphf . Add several multiples of L together, in a case where the total amount of multiplies is N . (Contributed by SN, 30-Jul-2024)

Ref Expression
Hypotheses mhphflem.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
mhphflem.h 𝐻 = { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 }
mhphflem.k 𝐵 = ( Base ‘ 𝐺 )
mhphflem.e · = ( .g𝐺 )
mhphflem.i ( 𝜑𝐼𝑉 )
mhphflem.g ( 𝜑𝐺 ∈ Mnd )
mhphflem.l ( 𝜑𝐿𝐵 )
mhphflem.n ( 𝜑𝑁 ∈ ℕ0 )
Assertion mhphflem ( ( 𝜑𝑎𝐻 ) → ( 𝐺 Σg ( 𝑣𝐼 ↦ ( ( 𝑎𝑣 ) · 𝐿 ) ) ) = ( 𝑁 · 𝐿 ) )

Proof

Step Hyp Ref Expression
1 mhphflem.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
2 mhphflem.h 𝐻 = { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 }
3 mhphflem.k 𝐵 = ( Base ‘ 𝐺 )
4 mhphflem.e · = ( .g𝐺 )
5 mhphflem.i ( 𝜑𝐼𝑉 )
6 mhphflem.g ( 𝜑𝐺 ∈ Mnd )
7 mhphflem.l ( 𝜑𝐿𝐵 )
8 mhphflem.n ( 𝜑𝑁 ∈ ℕ0 )
9 nn0subm 0 ∈ ( SubMnd ‘ ℂfld )
10 eqid ( ℂflds0 ) = ( ℂflds0 )
11 10 submbas ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ℕ0 = ( Base ‘ ( ℂflds0 ) ) )
12 9 11 ax-mp 0 = ( Base ‘ ( ℂflds0 ) )
13 cnfld0 0 = ( 0g ‘ ℂfld )
14 10 13 subm0 ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂflds0 ) ) )
15 9 14 ax-mp 0 = ( 0g ‘ ( ℂflds0 ) )
16 cnring fld ∈ Ring
17 ringcmn ( ℂfld ∈ Ring → ℂfld ∈ CMnd )
18 16 17 ax-mp fld ∈ CMnd
19 10 submcmn ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂflds0 ) ∈ CMnd )
20 18 9 19 mp2an ( ℂflds0 ) ∈ CMnd
21 20 a1i ( ( 𝜑𝑎𝐻 ) → ( ℂflds0 ) ∈ CMnd )
22 6 adantr ( ( 𝜑𝑎𝐻 ) → 𝐺 ∈ Mnd )
23 5 adantr ( ( 𝜑𝑎𝐻 ) → 𝐼𝑉 )
24 cnfldadd + = ( +g ‘ ℂfld )
25 10 24 ressplusg ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → + = ( +g ‘ ( ℂflds0 ) ) )
26 9 25 ax-mp + = ( +g ‘ ( ℂflds0 ) )
27 eqid ( +g𝐺 ) = ( +g𝐺 )
28 eqid ( 0g𝐺 ) = ( 0g𝐺 )
29 10 submmnd ( ℕ0 ∈ ( SubMnd ‘ ℂfld ) → ( ℂflds0 ) ∈ Mnd )
30 9 29 mp1i ( ( 𝜑𝑎𝐻 ) → ( ℂflds0 ) ∈ Mnd )
31 6 ad2antrr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐺 ∈ Mnd )
32 simpr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 )
33 7 ad2antrr ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐿𝐵 )
34 3 4 mulgnn0cl ( ( 𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝐿𝐵 ) → ( 𝑛 · 𝐿 ) ∈ 𝐵 )
35 31 32 33 34 syl3anc ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 · 𝐿 ) ∈ 𝐵 )
36 35 fmpttd ( ( 𝜑𝑎𝐻 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) : ℕ0𝐵 )
37 6 ad2antrr ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → 𝐺 ∈ Mnd )
38 simprl ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → 𝑥 ∈ ℕ0 )
39 simprr ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → 𝑦 ∈ ℕ0 )
40 7 ad2antrr ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → 𝐿𝐵 )
41 3 4 27 mulgnn0dir ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝐿𝐵 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐿 ) = ( ( 𝑥 · 𝐿 ) ( +g𝐺 ) ( 𝑦 · 𝐿 ) ) )
42 37 38 39 40 41 syl13anc ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐿 ) = ( ( 𝑥 · 𝐿 ) ( +g𝐺 ) ( 𝑦 · 𝐿 ) ) )
43 eqid ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) )
44 oveq1 ( 𝑛 = ( 𝑥 + 𝑦 ) → ( 𝑛 · 𝐿 ) = ( ( 𝑥 + 𝑦 ) · 𝐿 ) )
45 nn0addcl ( ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) → ( 𝑥 + 𝑦 ) ∈ ℕ0 )
46 45 adantl ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → ( 𝑥 + 𝑦 ) ∈ ℕ0 )
47 ovexd ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐿 ) ∈ V )
48 43 44 46 47 fvmptd3 ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑥 + 𝑦 ) · 𝐿 ) )
49 oveq1 ( 𝑛 = 𝑥 → ( 𝑛 · 𝐿 ) = ( 𝑥 · 𝐿 ) )
50 ovexd ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → ( 𝑥 · 𝐿 ) ∈ V )
51 43 49 38 50 fvmptd3 ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑥 ) = ( 𝑥 · 𝐿 ) )
52 oveq1 ( 𝑛 = 𝑦 → ( 𝑛 · 𝐿 ) = ( 𝑦 · 𝐿 ) )
53 ovexd ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → ( 𝑦 · 𝐿 ) ∈ V )
54 43 52 39 53 fvmptd3 ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑦 ) = ( 𝑦 · 𝐿 ) )
55 51 54 oveq12d ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑥 ) ( +g𝐺 ) ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑦 ) ) = ( ( 𝑥 · 𝐿 ) ( +g𝐺 ) ( 𝑦 · 𝐿 ) ) )
56 42 48 55 3eqtr4d ( ( ( 𝜑𝑎𝐻 ) ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑥 ) ( +g𝐺 ) ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 𝑦 ) ) )
57 oveq1 ( 𝑛 = 0 → ( 𝑛 · 𝐿 ) = ( 0 · 𝐿 ) )
58 0nn0 0 ∈ ℕ0
59 58 a1i ( ( 𝜑𝑎𝐻 ) → 0 ∈ ℕ0 )
60 ovexd ( ( 𝜑𝑎𝐻 ) → ( 0 · 𝐿 ) ∈ V )
61 43 57 59 60 fvmptd3 ( ( 𝜑𝑎𝐻 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 0 ) = ( 0 · 𝐿 ) )
62 7 adantr ( ( 𝜑𝑎𝐻 ) → 𝐿𝐵 )
63 3 28 4 mulg0 ( 𝐿𝐵 → ( 0 · 𝐿 ) = ( 0g𝐺 ) )
64 62 63 syl ( ( 𝜑𝑎𝐻 ) → ( 0 · 𝐿 ) = ( 0g𝐺 ) )
65 61 64 eqtrd ( ( 𝜑𝑎𝐻 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ‘ 0 ) = ( 0g𝐺 ) )
66 12 3 26 27 15 28 30 22 36 56 65 ismhmd ( ( 𝜑𝑎𝐻 ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 · 𝐿 ) ) ∈ ( ( ℂflds0 ) MndHom 𝐺 ) )
67 elrabi ( 𝑎 ∈ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } → 𝑎𝐷 )
68 67 2 eleq2s ( 𝑎𝐻𝑎𝐷 )
69 68 adantl ( ( 𝜑𝑎𝐻 ) → 𝑎𝐷 )
70 1 psrbagf ( 𝑎𝐷𝑎 : 𝐼 ⟶ ℕ0 )
71 69 70 syl ( ( 𝜑𝑎𝐻 ) → 𝑎 : 𝐼 ⟶ ℕ0 )
72 71 ffvelrnda ( ( ( 𝜑𝑎𝐻 ) ∧ 𝑣𝐼 ) → ( 𝑎𝑣 ) ∈ ℕ0 )
73 71 feqmptd ( ( 𝜑𝑎𝐻 ) → 𝑎 = ( 𝑣𝐼 ↦ ( 𝑎𝑣 ) ) )
74 1 psrbagfsupp ( 𝑎𝐷𝑎 finSupp 0 )
75 69 74 syl ( ( 𝜑𝑎𝐻 ) → 𝑎 finSupp 0 )
76 73 75 eqbrtrrd ( ( 𝜑𝑎𝐻 ) → ( 𝑣𝐼 ↦ ( 𝑎𝑣 ) ) finSupp 0 )
77 oveq1 ( 𝑛 = ( 𝑎𝑣 ) → ( 𝑛 · 𝐿 ) = ( ( 𝑎𝑣 ) · 𝐿 ) )
78 oveq1 ( 𝑛 = ( ( ℂflds0 ) Σg ( 𝑣𝐼 ↦ ( 𝑎𝑣 ) ) ) → ( 𝑛 · 𝐿 ) = ( ( ( ℂflds0 ) Σg ( 𝑣𝐼 ↦ ( 𝑎𝑣 ) ) ) · 𝐿 ) )
79 12 15 21 22 23 66 72 76 77 78 gsummhm2 ( ( 𝜑𝑎𝐻 ) → ( 𝐺 Σg ( 𝑣𝐼 ↦ ( ( 𝑎𝑣 ) · 𝐿 ) ) ) = ( ( ( ℂflds0 ) Σg ( 𝑣𝐼 ↦ ( 𝑎𝑣 ) ) ) · 𝐿 ) )
80 73 oveq2d ( ( 𝜑𝑎𝐻 ) → ( ( ℂflds0 ) Σg 𝑎 ) = ( ( ℂflds0 ) Σg ( 𝑣𝐼 ↦ ( 𝑎𝑣 ) ) ) )
81 oveq2 ( 𝑔 = 𝑎 → ( ( ℂflds0 ) Σg 𝑔 ) = ( ( ℂflds0 ) Σg 𝑎 ) )
82 81 eqeq1d ( 𝑔 = 𝑎 → ( ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 ↔ ( ( ℂflds0 ) Σg 𝑎 ) = 𝑁 ) )
83 82 2 elrab2 ( 𝑎𝐻 ↔ ( 𝑎𝐷 ∧ ( ( ℂflds0 ) Σg 𝑎 ) = 𝑁 ) )
84 83 simprbi ( 𝑎𝐻 → ( ( ℂflds0 ) Σg 𝑎 ) = 𝑁 )
85 84 adantl ( ( 𝜑𝑎𝐻 ) → ( ( ℂflds0 ) Σg 𝑎 ) = 𝑁 )
86 80 85 eqtr3d ( ( 𝜑𝑎𝐻 ) → ( ( ℂflds0 ) Σg ( 𝑣𝐼 ↦ ( 𝑎𝑣 ) ) ) = 𝑁 )
87 86 oveq1d ( ( 𝜑𝑎𝐻 ) → ( ( ( ℂflds0 ) Σg ( 𝑣𝐼 ↦ ( 𝑎𝑣 ) ) ) · 𝐿 ) = ( 𝑁 · 𝐿 ) )
88 79 87 eqtrd ( ( 𝜑𝑎𝐻 ) → ( 𝐺 Σg ( 𝑣𝐼 ↦ ( ( 𝑎𝑣 ) · 𝐿 ) ) ) = ( 𝑁 · 𝐿 ) )