Step |
Hyp |
Ref |
Expression |
1 |
|
mhpdeg.h |
|- H = ( I mHomP R ) |
2 |
|
mhpdeg.0 |
|- .0. = ( 0g ` R ) |
3 |
|
mhpdeg.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
4 |
|
mhpdeg.x |
|- ( ph -> X e. ( H ` N ) ) |
5 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
6 |
|
eqid |
|- ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) ) |
7 |
1 4
|
mhprcl |
|- ( ph -> N e. NN0 ) |
8 |
1 5 6 2 3 7
|
ismhp |
|- ( ph -> ( X e. ( H ` N ) <-> ( X e. ( Base ` ( I mPoly R ) ) /\ ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) ) |
9 |
8
|
simplbda |
|- ( ( ph /\ X e. ( H ` N ) ) -> ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
10 |
4 9
|
mpdan |
|- ( ph -> ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |