| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhp0cl.h |
|- H = ( I mHomP R ) |
| 2 |
|
mhp0cl.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
mhp0cl.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 4 |
|
mhp0cl.i |
|- ( ph -> I e. V ) |
| 5 |
|
mhp0cl.r |
|- ( ph -> R e. Grp ) |
| 6 |
|
mhp0cl.n |
|- ( ph -> N e. NN0 ) |
| 7 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
| 8 |
|
eqid |
|- ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) ) |
| 9 |
|
eqid |
|- ( 0g ` ( I mPoly R ) ) = ( 0g ` ( I mPoly R ) ) |
| 10 |
7 3 2 9 4 5
|
mpl0 |
|- ( ph -> ( 0g ` ( I mPoly R ) ) = ( D X. { .0. } ) ) |
| 11 |
7
|
mplgrp |
|- ( ( I e. V /\ R e. Grp ) -> ( I mPoly R ) e. Grp ) |
| 12 |
4 5 11
|
syl2anc |
|- ( ph -> ( I mPoly R ) e. Grp ) |
| 13 |
8 9
|
grpidcl |
|- ( ( I mPoly R ) e. Grp -> ( 0g ` ( I mPoly R ) ) e. ( Base ` ( I mPoly R ) ) ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( 0g ` ( I mPoly R ) ) e. ( Base ` ( I mPoly R ) ) ) |
| 15 |
10 14
|
eqeltrrd |
|- ( ph -> ( D X. { .0. } ) e. ( Base ` ( I mPoly R ) ) ) |
| 16 |
|
fczsupp0 |
|- ( ( D X. { .0. } ) supp .0. ) = (/) |
| 17 |
|
0ss |
|- (/) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } |
| 18 |
16 17
|
eqsstri |
|- ( ( D X. { .0. } ) supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } |
| 19 |
18
|
a1i |
|- ( ph -> ( ( D X. { .0. } ) supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
| 20 |
1 7 8 2 3 6 15 19
|
ismhp2 |
|- ( ph -> ( D X. { .0. } ) e. ( H ` N ) ) |