Step |
Hyp |
Ref |
Expression |
1 |
|
mhp0cl.h |
|- H = ( I mHomP R ) |
2 |
|
mhp0cl.0 |
|- .0. = ( 0g ` R ) |
3 |
|
mhp0cl.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
4 |
|
mhp0cl.i |
|- ( ph -> I e. V ) |
5 |
|
mhp0cl.r |
|- ( ph -> R e. Grp ) |
6 |
|
mhp0cl.n |
|- ( ph -> N e. NN0 ) |
7 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
8 |
|
eqid |
|- ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) ) |
9 |
|
eqid |
|- ( 0g ` ( I mPoly R ) ) = ( 0g ` ( I mPoly R ) ) |
10 |
7 3 2 9 4 5
|
mpl0 |
|- ( ph -> ( 0g ` ( I mPoly R ) ) = ( D X. { .0. } ) ) |
11 |
7
|
mplgrp |
|- ( ( I e. V /\ R e. Grp ) -> ( I mPoly R ) e. Grp ) |
12 |
4 5 11
|
syl2anc |
|- ( ph -> ( I mPoly R ) e. Grp ) |
13 |
8 9
|
grpidcl |
|- ( ( I mPoly R ) e. Grp -> ( 0g ` ( I mPoly R ) ) e. ( Base ` ( I mPoly R ) ) ) |
14 |
12 13
|
syl |
|- ( ph -> ( 0g ` ( I mPoly R ) ) e. ( Base ` ( I mPoly R ) ) ) |
15 |
10 14
|
eqeltrrd |
|- ( ph -> ( D X. { .0. } ) e. ( Base ` ( I mPoly R ) ) ) |
16 |
|
fczsupp0 |
|- ( ( D X. { .0. } ) supp .0. ) = (/) |
17 |
|
0ss |
|- (/) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } |
18 |
16 17
|
eqsstri |
|- ( ( D X. { .0. } ) supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } |
19 |
18
|
a1i |
|- ( ph -> ( ( D X. { .0. } ) supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
20 |
1 7 8 2 3 4 5 6 15 19
|
ismhp2 |
|- ( ph -> ( D X. { .0. } ) e. ( H ` N ) ) |