Metamath Proof Explorer


Theorem mhp0cl

Description: The zero polynomial is homogeneous. Under df-mhp , it has any (nonnegative integer) degree which loosely corresponds to the value "undefined". The values -oo and 0 are also used in Metamath (by df-mdeg and df-dgr respectively) and the literature: https://math.stackexchange.com/a/1796314/593843 . (Contributed by SN, 12-Sep-2023)

Ref Expression
Hypotheses mhp0cl.h
|- H = ( I mHomP R )
mhp0cl.0
|- .0. = ( 0g ` R )
mhp0cl.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
mhp0cl.i
|- ( ph -> I e. V )
mhp0cl.r
|- ( ph -> R e. Grp )
mhp0cl.n
|- ( ph -> N e. NN0 )
Assertion mhp0cl
|- ( ph -> ( D X. { .0. } ) e. ( H ` N ) )

Proof

Step Hyp Ref Expression
1 mhp0cl.h
 |-  H = ( I mHomP R )
2 mhp0cl.0
 |-  .0. = ( 0g ` R )
3 mhp0cl.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
4 mhp0cl.i
 |-  ( ph -> I e. V )
5 mhp0cl.r
 |-  ( ph -> R e. Grp )
6 mhp0cl.n
 |-  ( ph -> N e. NN0 )
7 eqid
 |-  ( I mPoly R ) = ( I mPoly R )
8 eqid
 |-  ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) )
9 eqid
 |-  ( 0g ` ( I mPoly R ) ) = ( 0g ` ( I mPoly R ) )
10 7 3 2 9 4 5 mpl0
 |-  ( ph -> ( 0g ` ( I mPoly R ) ) = ( D X. { .0. } ) )
11 7 mplgrp
 |-  ( ( I e. V /\ R e. Grp ) -> ( I mPoly R ) e. Grp )
12 4 5 11 syl2anc
 |-  ( ph -> ( I mPoly R ) e. Grp )
13 8 9 grpidcl
 |-  ( ( I mPoly R ) e. Grp -> ( 0g ` ( I mPoly R ) ) e. ( Base ` ( I mPoly R ) ) )
14 12 13 syl
 |-  ( ph -> ( 0g ` ( I mPoly R ) ) e. ( Base ` ( I mPoly R ) ) )
15 10 14 eqeltrrd
 |-  ( ph -> ( D X. { .0. } ) e. ( Base ` ( I mPoly R ) ) )
16 fczsupp0
 |-  ( ( D X. { .0. } ) supp .0. ) = (/)
17 0ss
 |-  (/) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N }
18 16 17 eqsstri
 |-  ( ( D X. { .0. } ) supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N }
19 18 a1i
 |-  ( ph -> ( ( D X. { .0. } ) supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } )
20 1 7 8 2 3 4 5 6 15 19 ismhp2
 |-  ( ph -> ( D X. { .0. } ) e. ( H ` N ) )