Description: Deduce a homogeneous polynomial from its properties. (Contributed by SN, 25-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismhp.h | |- H = ( I mHomP R ) |
|
ismhp.p | |- P = ( I mPoly R ) |
||
ismhp.b | |- B = ( Base ` P ) |
||
ismhp.0 | |- .0. = ( 0g ` R ) |
||
ismhp.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
ismhp.n | |- ( ph -> N e. NN0 ) |
||
ismhp2.1 | |- ( ph -> X e. B ) |
||
ismhp2.2 | |- ( ph -> ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
||
Assertion | ismhp2 | |- ( ph -> X e. ( H ` N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismhp.h | |- H = ( I mHomP R ) |
|
2 | ismhp.p | |- P = ( I mPoly R ) |
|
3 | ismhp.b | |- B = ( Base ` P ) |
|
4 | ismhp.0 | |- .0. = ( 0g ` R ) |
|
5 | ismhp.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
6 | ismhp.n | |- ( ph -> N e. NN0 ) |
|
7 | ismhp2.1 | |- ( ph -> X e. B ) |
|
8 | ismhp2.2 | |- ( ph -> ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
|
9 | 1 2 3 4 5 6 | ismhp | |- ( ph -> ( X e. ( H ` N ) <-> ( X e. B /\ ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) ) |
10 | 7 8 9 | mpbir2and | |- ( ph -> X e. ( H ` N ) ) |