Metamath Proof Explorer


Theorem ismhp2

Description: Deduce a homogeneous polynomial from its properties. (Contributed by SN, 25-May-2024)

Ref Expression
Hypotheses ismhp.h
|- H = ( I mHomP R )
ismhp.p
|- P = ( I mPoly R )
ismhp.b
|- B = ( Base ` P )
ismhp.0
|- .0. = ( 0g ` R )
ismhp.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
ismhp.n
|- ( ph -> N e. NN0 )
ismhp2.1
|- ( ph -> X e. B )
ismhp2.2
|- ( ph -> ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } )
Assertion ismhp2
|- ( ph -> X e. ( H ` N ) )

Proof

Step Hyp Ref Expression
1 ismhp.h
 |-  H = ( I mHomP R )
2 ismhp.p
 |-  P = ( I mPoly R )
3 ismhp.b
 |-  B = ( Base ` P )
4 ismhp.0
 |-  .0. = ( 0g ` R )
5 ismhp.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
6 ismhp.n
 |-  ( ph -> N e. NN0 )
7 ismhp2.1
 |-  ( ph -> X e. B )
8 ismhp2.2
 |-  ( ph -> ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } )
9 1 2 3 4 5 6 ismhp
 |-  ( ph -> ( X e. ( H ` N ) <-> ( X e. B /\ ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) )
10 7 8 9 mpbir2and
 |-  ( ph -> X e. ( H ` N ) )