| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismhp.h |
|- H = ( I mHomP R ) |
| 2 |
|
ismhp.p |
|- P = ( I mPoly R ) |
| 3 |
|
ismhp.b |
|- B = ( Base ` P ) |
| 4 |
|
ismhp.0 |
|- .0. = ( 0g ` R ) |
| 5 |
|
ismhp.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 6 |
|
ismhp.n |
|- ( ph -> N e. NN0 ) |
| 7 |
|
ismhp2.1 |
|- ( ph -> X e. B ) |
| 8 |
1 2 3 4 5 6
|
ismhp |
|- ( ph -> ( X e. ( H ` N ) <-> ( X e. B /\ ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) ) |
| 9 |
7
|
biantrurd |
|- ( ph -> ( ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } <-> ( X e. B /\ ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) ) |
| 10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 11 |
2 10 3 5 7
|
mplelf |
|- ( ph -> X : D --> ( Base ` R ) ) |
| 12 |
11
|
ffnd |
|- ( ph -> X Fn D ) |
| 13 |
4
|
fvexi |
|- .0. e. _V |
| 14 |
13
|
a1i |
|- ( ph -> .0. e. _V ) |
| 15 |
|
elsuppfng |
|- ( ( X Fn D /\ X e. B /\ .0. e. _V ) -> ( d e. ( X supp .0. ) <-> ( d e. D /\ ( X ` d ) =/= .0. ) ) ) |
| 16 |
12 7 14 15
|
syl3anc |
|- ( ph -> ( d e. ( X supp .0. ) <-> ( d e. D /\ ( X ` d ) =/= .0. ) ) ) |
| 17 |
|
oveq2 |
|- ( g = d -> ( ( CCfld |`s NN0 ) gsum g ) = ( ( CCfld |`s NN0 ) gsum d ) ) |
| 18 |
17
|
eqeq1d |
|- ( g = d -> ( ( ( CCfld |`s NN0 ) gsum g ) = N <-> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) |
| 19 |
18
|
elrab |
|- ( d e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } <-> ( d e. D /\ ( ( CCfld |`s NN0 ) gsum d ) = N ) ) |
| 20 |
19
|
a1i |
|- ( ph -> ( d e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } <-> ( d e. D /\ ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) |
| 21 |
16 20
|
imbi12d |
|- ( ph -> ( ( d e. ( X supp .0. ) -> d e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) <-> ( ( d e. D /\ ( X ` d ) =/= .0. ) -> ( d e. D /\ ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) ) |
| 22 |
|
imdistan |
|- ( ( d e. D -> ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) <-> ( ( d e. D /\ ( X ` d ) =/= .0. ) -> ( d e. D /\ ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) |
| 23 |
21 22
|
bitr4di |
|- ( ph -> ( ( d e. ( X supp .0. ) -> d e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) <-> ( d e. D -> ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) ) |
| 24 |
23
|
albidv |
|- ( ph -> ( A. d ( d e. ( X supp .0. ) -> d e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) <-> A. d ( d e. D -> ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) ) |
| 25 |
|
df-ss |
|- ( ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } <-> A. d ( d e. ( X supp .0. ) -> d e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) |
| 26 |
|
df-ral |
|- ( A. d e. D ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) <-> A. d ( d e. D -> ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) |
| 27 |
24 25 26
|
3bitr4g |
|- ( ph -> ( ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } <-> A. d e. D ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) |
| 28 |
8 9 27
|
3bitr2d |
|- ( ph -> ( X e. ( H ` N ) <-> A. d e. D ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) |