Step |
Hyp |
Ref |
Expression |
1 |
|
mhpfval.h |
|- H = ( I mHomP R ) |
2 |
|
mhpfval.p |
|- P = ( I mPoly R ) |
3 |
|
mhpfval.b |
|- B = ( Base ` P ) |
4 |
|
mhpfval.0 |
|- .0. = ( 0g ` R ) |
5 |
|
mhpfval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
6 |
|
mhpfval.i |
|- ( ph -> I e. V ) |
7 |
|
mhpfval.r |
|- ( ph -> R e. W ) |
8 |
|
mhpval.n |
|- ( ph -> N e. NN0 ) |
9 |
|
ismhp2.1 |
|- ( ph -> X e. B ) |
10 |
1 2 3 4 5 6 7 8
|
ismhp |
|- ( ph -> ( X e. ( H ` N ) <-> ( X e. B /\ ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) ) |
11 |
9
|
biantrurd |
|- ( ph -> ( ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } <-> ( X e. B /\ ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) ) |
12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
13 |
2 12 3 5 9
|
mplelf |
|- ( ph -> X : D --> ( Base ` R ) ) |
14 |
13
|
ffnd |
|- ( ph -> X Fn D ) |
15 |
4
|
fvexi |
|- .0. e. _V |
16 |
15
|
a1i |
|- ( ph -> .0. e. _V ) |
17 |
|
elsuppfng |
|- ( ( X Fn D /\ X e. B /\ .0. e. _V ) -> ( d e. ( X supp .0. ) <-> ( d e. D /\ ( X ` d ) =/= .0. ) ) ) |
18 |
14 9 16 17
|
syl3anc |
|- ( ph -> ( d e. ( X supp .0. ) <-> ( d e. D /\ ( X ` d ) =/= .0. ) ) ) |
19 |
|
oveq2 |
|- ( g = d -> ( ( CCfld |`s NN0 ) gsum g ) = ( ( CCfld |`s NN0 ) gsum d ) ) |
20 |
19
|
eqeq1d |
|- ( g = d -> ( ( ( CCfld |`s NN0 ) gsum g ) = N <-> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) |
21 |
20
|
elrab |
|- ( d e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } <-> ( d e. D /\ ( ( CCfld |`s NN0 ) gsum d ) = N ) ) |
22 |
21
|
a1i |
|- ( ph -> ( d e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } <-> ( d e. D /\ ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) |
23 |
18 22
|
imbi12d |
|- ( ph -> ( ( d e. ( X supp .0. ) -> d e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) <-> ( ( d e. D /\ ( X ` d ) =/= .0. ) -> ( d e. D /\ ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) ) |
24 |
|
imdistan |
|- ( ( d e. D -> ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) <-> ( ( d e. D /\ ( X ` d ) =/= .0. ) -> ( d e. D /\ ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) |
25 |
23 24
|
bitr4di |
|- ( ph -> ( ( d e. ( X supp .0. ) -> d e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) <-> ( d e. D -> ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) ) |
26 |
25
|
albidv |
|- ( ph -> ( A. d ( d e. ( X supp .0. ) -> d e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) <-> A. d ( d e. D -> ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) ) |
27 |
|
dfss2 |
|- ( ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } <-> A. d ( d e. ( X supp .0. ) -> d e. { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) |
28 |
|
df-ral |
|- ( A. d e. D ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) <-> A. d ( d e. D -> ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) |
29 |
26 27 28
|
3bitr4g |
|- ( ph -> ( ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } <-> A. d e. D ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) |
30 |
10 11 29
|
3bitr2d |
|- ( ph -> ( X e. ( H ` N ) <-> A. d e. D ( ( X ` d ) =/= .0. -> ( ( CCfld |`s NN0 ) gsum d ) = N ) ) ) |