Metamath Proof Explorer


Theorem ismhp3

Description: A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024)

Ref Expression
Hypotheses mhpfval.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhpfval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mhpfval.b 𝐵 = ( Base ‘ 𝑃 )
mhpfval.0 0 = ( 0g𝑅 )
mhpfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
mhpfval.i ( 𝜑𝐼𝑉 )
mhpfval.r ( 𝜑𝑅𝑊 )
mhpval.n ( 𝜑𝑁 ∈ ℕ0 )
ismhp2.1 ( 𝜑𝑋𝐵 )
Assertion ismhp3 ( 𝜑 → ( 𝑋 ∈ ( 𝐻𝑁 ) ↔ ∀ 𝑑𝐷 ( ( 𝑋𝑑 ) ≠ 0 → ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 mhpfval.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhpfval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mhpfval.b 𝐵 = ( Base ‘ 𝑃 )
4 mhpfval.0 0 = ( 0g𝑅 )
5 mhpfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
6 mhpfval.i ( 𝜑𝐼𝑉 )
7 mhpfval.r ( 𝜑𝑅𝑊 )
8 mhpval.n ( 𝜑𝑁 ∈ ℕ0 )
9 ismhp2.1 ( 𝜑𝑋𝐵 )
10 1 2 3 4 5 6 7 8 ismhp ( 𝜑 → ( 𝑋 ∈ ( 𝐻𝑁 ) ↔ ( 𝑋𝐵 ∧ ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) ) )
11 9 biantrurd ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ↔ ( 𝑋𝐵 ∧ ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) ) )
12 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
13 2 12 3 5 9 mplelf ( 𝜑𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) )
14 13 ffnd ( 𝜑𝑋 Fn 𝐷 )
15 4 fvexi 0 ∈ V
16 15 a1i ( 𝜑0 ∈ V )
17 elsuppfng ( ( 𝑋 Fn 𝐷𝑋𝐵0 ∈ V ) → ( 𝑑 ∈ ( 𝑋 supp 0 ) ↔ ( 𝑑𝐷 ∧ ( 𝑋𝑑 ) ≠ 0 ) ) )
18 14 9 16 17 syl3anc ( 𝜑 → ( 𝑑 ∈ ( 𝑋 supp 0 ) ↔ ( 𝑑𝐷 ∧ ( 𝑋𝑑 ) ≠ 0 ) ) )
19 oveq2 ( 𝑔 = 𝑑 → ( ( ℂflds0 ) Σg 𝑔 ) = ( ( ℂflds0 ) Σg 𝑑 ) )
20 19 eqeq1d ( 𝑔 = 𝑑 → ( ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 ↔ ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) )
21 20 elrab ( 𝑑 ∈ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ↔ ( 𝑑𝐷 ∧ ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) )
22 21 a1i ( 𝜑 → ( 𝑑 ∈ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ↔ ( 𝑑𝐷 ∧ ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) ) )
23 18 22 imbi12d ( 𝜑 → ( ( 𝑑 ∈ ( 𝑋 supp 0 ) → 𝑑 ∈ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) ↔ ( ( 𝑑𝐷 ∧ ( 𝑋𝑑 ) ≠ 0 ) → ( 𝑑𝐷 ∧ ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) ) ) )
24 imdistan ( ( 𝑑𝐷 → ( ( 𝑋𝑑 ) ≠ 0 → ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) ) ↔ ( ( 𝑑𝐷 ∧ ( 𝑋𝑑 ) ≠ 0 ) → ( 𝑑𝐷 ∧ ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) ) )
25 23 24 bitr4di ( 𝜑 → ( ( 𝑑 ∈ ( 𝑋 supp 0 ) → 𝑑 ∈ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) ↔ ( 𝑑𝐷 → ( ( 𝑋𝑑 ) ≠ 0 → ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) ) ) )
26 25 albidv ( 𝜑 → ( ∀ 𝑑 ( 𝑑 ∈ ( 𝑋 supp 0 ) → 𝑑 ∈ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) ↔ ∀ 𝑑 ( 𝑑𝐷 → ( ( 𝑋𝑑 ) ≠ 0 → ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) ) ) )
27 dfss2 ( ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ↔ ∀ 𝑑 ( 𝑑 ∈ ( 𝑋 supp 0 ) → 𝑑 ∈ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) )
28 df-ral ( ∀ 𝑑𝐷 ( ( 𝑋𝑑 ) ≠ 0 → ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) ↔ ∀ 𝑑 ( 𝑑𝐷 → ( ( 𝑋𝑑 ) ≠ 0 → ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) ) )
29 26 27 28 3bitr4g ( 𝜑 → ( ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ↔ ∀ 𝑑𝐷 ( ( 𝑋𝑑 ) ≠ 0 → ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) ) )
30 10 11 29 3bitr2d ( 𝜑 → ( 𝑋 ∈ ( 𝐻𝑁 ) ↔ ∀ 𝑑𝐷 ( ( 𝑋𝑑 ) ≠ 0 → ( ( ℂflds0 ) Σg 𝑑 ) = 𝑁 ) ) )