Metamath Proof Explorer


Theorem ismhp

Description: Property of being a homogeneous polynomial. (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpfval.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhpfval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mhpfval.b 𝐵 = ( Base ‘ 𝑃 )
mhpfval.0 0 = ( 0g𝑅 )
mhpfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
mhpfval.i ( 𝜑𝐼𝑉 )
mhpfval.r ( 𝜑𝑅𝑊 )
mhpval.n ( 𝜑𝑁 ∈ ℕ0 )
Assertion ismhp ( 𝜑 → ( 𝑋 ∈ ( 𝐻𝑁 ) ↔ ( 𝑋𝐵 ∧ ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) ) )

Proof

Step Hyp Ref Expression
1 mhpfval.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhpfval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mhpfval.b 𝐵 = ( Base ‘ 𝑃 )
4 mhpfval.0 0 = ( 0g𝑅 )
5 mhpfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
6 mhpfval.i ( 𝜑𝐼𝑉 )
7 mhpfval.r ( 𝜑𝑅𝑊 )
8 mhpval.n ( 𝜑𝑁 ∈ ℕ0 )
9 1 2 3 4 5 6 7 8 mhpval ( 𝜑 → ( 𝐻𝑁 ) = { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } } )
10 9 eleq2d ( 𝜑 → ( 𝑋 ∈ ( 𝐻𝑁 ) ↔ 𝑋 ∈ { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } } ) )
11 oveq1 ( 𝑓 = 𝑋 → ( 𝑓 supp 0 ) = ( 𝑋 supp 0 ) )
12 11 sseq1d ( 𝑓 = 𝑋 → ( ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ↔ ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) )
13 12 elrab ( 𝑋 ∈ { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } } ↔ ( 𝑋𝐵 ∧ ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) )
14 10 13 bitrdi ( 𝜑 → ( 𝑋 ∈ ( 𝐻𝑁 ) ↔ ( 𝑋𝐵 ∧ ( 𝑋 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) ) )