Step |
Hyp |
Ref |
Expression |
1 |
|
ismhp.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
ismhp.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
ismhp.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
ismhp.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
ismhp.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
6 |
|
ismhp.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
7 |
|
reldmmhp |
⊢ Rel dom mHomP |
8 |
|
id |
⊢ ( 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) |
9 |
7 1 8
|
elfvov1 |
⊢ ( 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) → 𝐼 ∈ V ) |
10 |
7 1 8
|
elfvov2 |
⊢ ( 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) → 𝑅 ∈ V ) |
11 |
9 10
|
jca |
⊢ ( 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
12 |
11
|
anim2i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) → ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) ) |
13 |
|
reldmmpl |
⊢ Rel dom mPoly |
14 |
13 2 3
|
elbasov |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
16 |
15
|
anim2i |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ) → ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) ) |
17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝐼 ∈ V ) |
18 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝑅 ∈ V ) |
19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝑁 ∈ ℕ0 ) |
20 |
1 2 3 4 5 17 18 19
|
mhpval |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( 𝐻 ‘ 𝑁 ) = { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } } ) |
21 |
20
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ↔ 𝑋 ∈ { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } } ) ) |
22 |
|
oveq1 |
⊢ ( 𝑓 = 𝑋 → ( 𝑓 supp 0 ) = ( 𝑋 supp 0 ) ) |
23 |
22
|
sseq1d |
⊢ ( 𝑓 = 𝑋 → ( ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↔ ( 𝑋 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ) |
24 |
23
|
elrab |
⊢ ( 𝑋 ∈ { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } } ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ) |
25 |
21 24
|
bitrdi |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ) ) |
26 |
12 16 25
|
pm5.21nd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ) ) |