Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Additional definitions for (multivariate) polynomials
ismhp
Next ⟩
ismhp2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ismhp
Description:
Property of being a homogeneous polynomial.
(Contributed by
Steven Nguyen
, 25-Aug-2023)
Ref
Expression
Hypotheses
mhpfval.h
⊢
H
=
I
mHomP
R
mhpfval.p
⊢
P
=
I
mPoly
R
mhpfval.b
⊢
B
=
Base
P
mhpfval.0
⊢
0
˙
=
0
R
mhpfval.d
⊢
D
=
h
∈
ℕ
0
I
|
h
-1
ℕ
∈
Fin
mhpfval.i
⊢
φ
→
I
∈
V
mhpfval.r
⊢
φ
→
R
∈
W
mhpval.n
⊢
φ
→
N
∈
ℕ
0
Assertion
ismhp
⊢
φ
→
X
∈
H
⁡
N
↔
X
∈
B
∧
X
supp
0
˙
⊆
g
∈
D
|
∑
ℂ
fld
↾
𝑠
ℕ
0
g
=
N
Proof
Step
Hyp
Ref
Expression
1
mhpfval.h
⊢
H
=
I
mHomP
R
2
mhpfval.p
⊢
P
=
I
mPoly
R
3
mhpfval.b
⊢
B
=
Base
P
4
mhpfval.0
⊢
0
˙
=
0
R
5
mhpfval.d
⊢
D
=
h
∈
ℕ
0
I
|
h
-1
ℕ
∈
Fin
6
mhpfval.i
⊢
φ
→
I
∈
V
7
mhpfval.r
⊢
φ
→
R
∈
W
8
mhpval.n
⊢
φ
→
N
∈
ℕ
0
9
1
2
3
4
5
6
7
8
mhpval
⊢
φ
→
H
⁡
N
=
f
∈
B
|
f
supp
0
˙
⊆
g
∈
D
|
∑
ℂ
fld
↾
𝑠
ℕ
0
g
=
N
10
9
eleq2d
⊢
φ
→
X
∈
H
⁡
N
↔
X
∈
f
∈
B
|
f
supp
0
˙
⊆
g
∈
D
|
∑
ℂ
fld
↾
𝑠
ℕ
0
g
=
N
11
oveq1
⊢
f
=
X
→
f
supp
0
˙
=
X
supp
0
˙
12
11
sseq1d
⊢
f
=
X
→
f
supp
0
˙
⊆
g
∈
D
|
∑
ℂ
fld
↾
𝑠
ℕ
0
g
=
N
↔
X
supp
0
˙
⊆
g
∈
D
|
∑
ℂ
fld
↾
𝑠
ℕ
0
g
=
N
13
12
elrab
⊢
X
∈
f
∈
B
|
f
supp
0
˙
⊆
g
∈
D
|
∑
ℂ
fld
↾
𝑠
ℕ
0
g
=
N
↔
X
∈
B
∧
X
supp
0
˙
⊆
g
∈
D
|
∑
ℂ
fld
↾
𝑠
ℕ
0
g
=
N
14
10
13
bitrdi
⊢
φ
→
X
∈
H
⁡
N
↔
X
∈
B
∧
X
supp
0
˙
⊆
g
∈
D
|
∑
ℂ
fld
↾
𝑠
ℕ
0
g
=
N