Metamath Proof Explorer


Theorem ismhp2

Description: Deduce a homogeneous polynomial from its properties. (Contributed by SN, 25-May-2024)

Ref Expression
Hypotheses mhpfval.h H = I mHomP R
mhpfval.p P = I mPoly R
mhpfval.b B = Base P
mhpfval.0 0 ˙ = 0 R
mhpfval.d D = h 0 I | h -1 Fin
mhpfval.i φ I V
mhpfval.r φ R W
mhpval.n φ N 0
ismhp2.1 φ X B
ismhp2.2 φ X supp 0 ˙ g D | fld 𝑠 0 g = N
Assertion ismhp2 φ X H N

Proof

Step Hyp Ref Expression
1 mhpfval.h H = I mHomP R
2 mhpfval.p P = I mPoly R
3 mhpfval.b B = Base P
4 mhpfval.0 0 ˙ = 0 R
5 mhpfval.d D = h 0 I | h -1 Fin
6 mhpfval.i φ I V
7 mhpfval.r φ R W
8 mhpval.n φ N 0
9 ismhp2.1 φ X B
10 ismhp2.2 φ X supp 0 ˙ g D | fld 𝑠 0 g = N
11 1 2 3 4 5 6 7 8 ismhp φ X H N X B X supp 0 ˙ g D | fld 𝑠 0 g = N
12 9 10 11 mpbir2and φ X H N