Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Additional definitions for (multivariate) polynomials
ismhp2
Next ⟩
ismhp3
Metamath Proof Explorer
Ascii
Unicode
Theorem
ismhp2
Description:
Deduce a homogeneous polynomial from its properties.
(Contributed by
SN
, 25-May-2024)
Ref
Expression
Hypotheses
mhpfval.h
⊢
H
=
I
mHomP
R
mhpfval.p
⊢
P
=
I
mPoly
R
mhpfval.b
⊢
B
=
Base
P
mhpfval.0
⊢
0
˙
=
0
R
mhpfval.d
⊢
D
=
h
∈
ℕ
0
I
|
h
-1
ℕ
∈
Fin
mhpfval.i
⊢
φ
→
I
∈
V
mhpfval.r
⊢
φ
→
R
∈
W
mhpval.n
⊢
φ
→
N
∈
ℕ
0
ismhp2.1
⊢
φ
→
X
∈
B
ismhp2.2
⊢
φ
→
X
supp
0
˙
⊆
g
∈
D
|
∑
ℂ
fld
↾
𝑠
ℕ
0
g
=
N
Assertion
ismhp2
⊢
φ
→
X
∈
H
⁡
N
Proof
Step
Hyp
Ref
Expression
1
mhpfval.h
⊢
H
=
I
mHomP
R
2
mhpfval.p
⊢
P
=
I
mPoly
R
3
mhpfval.b
⊢
B
=
Base
P
4
mhpfval.0
⊢
0
˙
=
0
R
5
mhpfval.d
⊢
D
=
h
∈
ℕ
0
I
|
h
-1
ℕ
∈
Fin
6
mhpfval.i
⊢
φ
→
I
∈
V
7
mhpfval.r
⊢
φ
→
R
∈
W
8
mhpval.n
⊢
φ
→
N
∈
ℕ
0
9
ismhp2.1
⊢
φ
→
X
∈
B
10
ismhp2.2
⊢
φ
→
X
supp
0
˙
⊆
g
∈
D
|
∑
ℂ
fld
↾
𝑠
ℕ
0
g
=
N
11
1
2
3
4
5
6
7
8
ismhp
⊢
φ
→
X
∈
H
⁡
N
↔
X
∈
B
∧
X
supp
0
˙
⊆
g
∈
D
|
∑
ℂ
fld
↾
𝑠
ℕ
0
g
=
N
12
9
10
11
mpbir2and
⊢
φ
→
X
∈
H
⁡
N