Step |
Hyp |
Ref |
Expression |
1 |
|
mhpfval.h |
|- H = ( I mHomP R ) |
2 |
|
mhpfval.p |
|- P = ( I mPoly R ) |
3 |
|
mhpfval.b |
|- B = ( Base ` P ) |
4 |
|
mhpfval.0 |
|- .0. = ( 0g ` R ) |
5 |
|
mhpfval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
6 |
|
mhpfval.i |
|- ( ph -> I e. V ) |
7 |
|
mhpfval.r |
|- ( ph -> R e. W ) |
8 |
|
mhpval.n |
|- ( ph -> N e. NN0 ) |
9 |
1 2 3 4 5 6 7 8
|
mhpval |
|- ( ph -> ( H ` N ) = { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } } ) |
10 |
9
|
eleq2d |
|- ( ph -> ( X e. ( H ` N ) <-> X e. { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } } ) ) |
11 |
|
oveq1 |
|- ( f = X -> ( f supp .0. ) = ( X supp .0. ) ) |
12 |
11
|
sseq1d |
|- ( f = X -> ( ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } <-> ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) |
13 |
12
|
elrab |
|- ( X e. { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } } <-> ( X e. B /\ ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) |
14 |
10 13
|
bitrdi |
|- ( ph -> ( X e. ( H ` N ) <-> ( X e. B /\ ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) ) |