Metamath Proof Explorer


Theorem ismhp

Description: Property of being a homogeneous polynomial. (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpfval.h
|- H = ( I mHomP R )
mhpfval.p
|- P = ( I mPoly R )
mhpfval.b
|- B = ( Base ` P )
mhpfval.0
|- .0. = ( 0g ` R )
mhpfval.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
mhpfval.i
|- ( ph -> I e. V )
mhpfval.r
|- ( ph -> R e. W )
mhpval.n
|- ( ph -> N e. NN0 )
Assertion ismhp
|- ( ph -> ( X e. ( H ` N ) <-> ( X e. B /\ ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) )

Proof

Step Hyp Ref Expression
1 mhpfval.h
 |-  H = ( I mHomP R )
2 mhpfval.p
 |-  P = ( I mPoly R )
3 mhpfval.b
 |-  B = ( Base ` P )
4 mhpfval.0
 |-  .0. = ( 0g ` R )
5 mhpfval.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
6 mhpfval.i
 |-  ( ph -> I e. V )
7 mhpfval.r
 |-  ( ph -> R e. W )
8 mhpval.n
 |-  ( ph -> N e. NN0 )
9 1 2 3 4 5 6 7 8 mhpval
 |-  ( ph -> ( H ` N ) = { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } } )
10 9 eleq2d
 |-  ( ph -> ( X e. ( H ` N ) <-> X e. { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } } ) )
11 oveq1
 |-  ( f = X -> ( f supp .0. ) = ( X supp .0. ) )
12 11 sseq1d
 |-  ( f = X -> ( ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } <-> ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) )
13 12 elrab
 |-  ( X e. { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } } <-> ( X e. B /\ ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) )
14 10 13 bitrdi
 |-  ( ph -> ( X e. ( H ` N ) <-> ( X e. B /\ ( X supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) )