Step |
Hyp |
Ref |
Expression |
1 |
|
mhpfval.h |
|- H = ( I mHomP R ) |
2 |
|
mhpfval.p |
|- P = ( I mPoly R ) |
3 |
|
mhpfval.b |
|- B = ( Base ` P ) |
4 |
|
mhpfval.0 |
|- .0. = ( 0g ` R ) |
5 |
|
mhpfval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
6 |
|
mhpfval.i |
|- ( ph -> I e. V ) |
7 |
|
mhpfval.r |
|- ( ph -> R e. W ) |
8 |
|
mhpval.n |
|- ( ph -> N e. NN0 ) |
9 |
1 2 3 4 5 6 7
|
mhpfval |
|- ( ph -> H = ( n e. NN0 |-> { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) ) |
10 |
|
eqeq2 |
|- ( n = N -> ( ( ( CCfld |`s NN0 ) gsum g ) = n <-> ( ( CCfld |`s NN0 ) gsum g ) = N ) ) |
11 |
10
|
rabbidv |
|- ( n = N -> { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } = { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
12 |
11
|
sseq2d |
|- ( n = N -> ( ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } <-> ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) |
13 |
12
|
rabbidv |
|- ( n = N -> { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } } = { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } } ) |
14 |
13
|
adantl |
|- ( ( ph /\ n = N ) -> { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } } = { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } } ) |
15 |
3
|
fvexi |
|- B e. _V |
16 |
15
|
rabex |
|- { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } } e. _V |
17 |
16
|
a1i |
|- ( ph -> { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } } e. _V ) |
18 |
9 14 8 17
|
fvmptd |
|- ( ph -> ( H ` N ) = { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } } ) |