Step |
Hyp |
Ref |
Expression |
1 |
|
mhpfval.h |
|- H = ( I mHomP R ) |
2 |
|
mhpfval.p |
|- P = ( I mPoly R ) |
3 |
|
mhpfval.b |
|- B = ( Base ` P ) |
4 |
|
mhpfval.0 |
|- .0. = ( 0g ` R ) |
5 |
|
mhpfval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
6 |
|
mhpfval.i |
|- ( ph -> I e. V ) |
7 |
|
mhpfval.r |
|- ( ph -> R e. W ) |
8 |
6
|
elexd |
|- ( ph -> I e. _V ) |
9 |
7
|
elexd |
|- ( ph -> R e. _V ) |
10 |
|
oveq12 |
|- ( ( i = I /\ r = R ) -> ( i mPoly r ) = ( I mPoly R ) ) |
11 |
10 2
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> ( i mPoly r ) = P ) |
12 |
11
|
fveq2d |
|- ( ( i = I /\ r = R ) -> ( Base ` ( i mPoly r ) ) = ( Base ` P ) ) |
13 |
12 3
|
eqtr4di |
|- ( ( i = I /\ r = R ) -> ( Base ` ( i mPoly r ) ) = B ) |
14 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
15 |
14 4
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
16 |
15
|
oveq2d |
|- ( r = R -> ( f supp ( 0g ` r ) ) = ( f supp .0. ) ) |
17 |
16
|
adantl |
|- ( ( i = I /\ r = R ) -> ( f supp ( 0g ` r ) ) = ( f supp .0. ) ) |
18 |
|
oveq2 |
|- ( i = I -> ( NN0 ^m i ) = ( NN0 ^m I ) ) |
19 |
18
|
rabeqdv |
|- ( i = I -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
20 |
19 5
|
eqtr4di |
|- ( i = I -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = D ) |
21 |
20
|
rabeqdv |
|- ( i = I -> { g e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } = { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } ) |
22 |
21
|
adantr |
|- ( ( i = I /\ r = R ) -> { g e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } = { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } ) |
23 |
17 22
|
sseq12d |
|- ( ( i = I /\ r = R ) -> ( ( f supp ( 0g ` r ) ) C_ { g e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } <-> ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } ) ) |
24 |
13 23
|
rabeqbidv |
|- ( ( i = I /\ r = R ) -> { f e. ( Base ` ( i mPoly r ) ) | ( f supp ( 0g ` r ) ) C_ { g e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } = { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) |
25 |
24
|
mpteq2dv |
|- ( ( i = I /\ r = R ) -> ( n e. NN0 |-> { f e. ( Base ` ( i mPoly r ) ) | ( f supp ( 0g ` r ) ) C_ { g e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) = ( n e. NN0 |-> { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) ) |
26 |
|
df-mhp |
|- mHomP = ( i e. _V , r e. _V |-> ( n e. NN0 |-> { f e. ( Base ` ( i mPoly r ) ) | ( f supp ( 0g ` r ) ) C_ { g e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) ) |
27 |
|
nn0ex |
|- NN0 e. _V |
28 |
27
|
mptex |
|- ( n e. NN0 |-> { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) e. _V |
29 |
25 26 28
|
ovmpoa |
|- ( ( I e. _V /\ R e. _V ) -> ( I mHomP R ) = ( n e. NN0 |-> { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) ) |
30 |
8 9 29
|
syl2anc |
|- ( ph -> ( I mHomP R ) = ( n e. NN0 |-> { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) ) |
31 |
1 30
|
eqtrid |
|- ( ph -> H = ( n e. NN0 |-> { f e. B | ( f supp .0. ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) ) |