Step |
Hyp |
Ref |
Expression |
1 |
|
mhpfval.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhpfval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mhpfval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
mhpfval.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mhpfval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
6 |
|
mhpfval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
7 |
|
mhpfval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
8 |
6
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
9 |
7
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
10 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPoly 𝑟 ) = ( 𝐼 mPoly 𝑅 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPoly 𝑟 ) = 𝑃 ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) = ( Base ‘ 𝑃 ) ) |
13 |
12 3
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) = 𝐵 ) |
14 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
15 |
14 4
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
16 |
15
|
oveq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑓 supp ( 0g ‘ 𝑟 ) ) = ( 𝑓 supp 0 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑓 supp ( 0g ‘ 𝑟 ) ) = ( 𝑓 supp 0 ) ) |
18 |
|
oveq2 |
⊢ ( 𝑖 = 𝐼 → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
19 |
18
|
rabeqdv |
⊢ ( 𝑖 = 𝐼 → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
20 |
19 5
|
eqtr4di |
⊢ ( 𝑖 = 𝐼 → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = 𝐷 ) |
21 |
20
|
rabeqdv |
⊢ ( 𝑖 = 𝐼 → { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } = { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } ) |
22 |
21
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } = { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } ) |
23 |
17 22
|
sseq12d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } ↔ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } ) ) |
24 |
13 23
|
rabeqbidv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } = { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) |
25 |
24
|
mpteq2dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ) |
26 |
|
df-mhp |
⊢ mHomP = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ) |
27 |
|
nn0ex |
⊢ ℕ0 ∈ V |
28 |
27
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ∈ V |
29 |
25 26 28
|
ovmpoa |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mHomP 𝑅 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ) |
30 |
8 9 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 mHomP 𝑅 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ) |
31 |
1 30
|
eqtrid |
⊢ ( 𝜑 → 𝐻 = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ) |