Metamath Proof Explorer


Theorem mhpfval

Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpfval.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhpfval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mhpfval.b 𝐵 = ( Base ‘ 𝑃 )
mhpfval.0 0 = ( 0g𝑅 )
mhpfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
mhpfval.i ( 𝜑𝐼𝑉 )
mhpfval.r ( 𝜑𝑅𝑊 )
Assertion mhpfval ( 𝜑𝐻 = ( 𝑛 ∈ ℕ0 ↦ { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) )

Proof

Step Hyp Ref Expression
1 mhpfval.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhpfval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mhpfval.b 𝐵 = ( Base ‘ 𝑃 )
4 mhpfval.0 0 = ( 0g𝑅 )
5 mhpfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
6 mhpfval.i ( 𝜑𝐼𝑉 )
7 mhpfval.r ( 𝜑𝑅𝑊 )
8 6 elexd ( 𝜑𝐼 ∈ V )
9 7 elexd ( 𝜑𝑅 ∈ V )
10 oveq12 ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑖 mPoly 𝑟 ) = ( 𝐼 mPoly 𝑅 ) )
11 10 2 eqtr4di ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑖 mPoly 𝑟 ) = 𝑃 )
12 11 fveq2d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) = ( Base ‘ 𝑃 ) )
13 12 3 eqtr4di ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) = 𝐵 )
14 fveq2 ( 𝑟 = 𝑅 → ( 0g𝑟 ) = ( 0g𝑅 ) )
15 14 4 eqtr4di ( 𝑟 = 𝑅 → ( 0g𝑟 ) = 0 )
16 15 oveq2d ( 𝑟 = 𝑅 → ( 𝑓 supp ( 0g𝑟 ) ) = ( 𝑓 supp 0 ) )
17 16 adantl ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑓 supp ( 0g𝑟 ) ) = ( 𝑓 supp 0 ) )
18 oveq2 ( 𝑖 = 𝐼 → ( ℕ0m 𝑖 ) = ( ℕ0m 𝐼 ) )
19 18 rabeqdv ( 𝑖 = 𝐼 → { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
20 19 5 eqtr4di ( 𝑖 = 𝐼 → { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } = 𝐷 )
21 20 rabeqdv ( 𝑖 = 𝐼 → { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } = { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } )
22 21 adantr ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } = { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } )
23 17 22 sseq12d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( ( 𝑓 supp ( 0g𝑟 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } ↔ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } ) )
24 13 23 rabeqbidv ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g𝑟 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } = { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } )
25 24 mpteq2dv ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g𝑟 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) )
26 df-mhp mHomP = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g𝑟 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) )
27 nn0ex 0 ∈ V
28 27 mptex ( 𝑛 ∈ ℕ0 ↦ { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) ∈ V
29 25 26 28 ovmpoa ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mHomP 𝑅 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) )
30 8 9 29 syl2anc ( 𝜑 → ( 𝐼 mHomP 𝑅 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) )
31 1 30 syl5eq ( 𝜑𝐻 = ( 𝑛 ∈ ℕ0 ↦ { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) )