Metamath Proof Explorer


Theorem mhpfval

Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpfval.h H = I mHomP R
mhpfval.p P = I mPoly R
mhpfval.b B = Base P
mhpfval.0 0 ˙ = 0 R
mhpfval.d D = h 0 I | h -1 Fin
mhpfval.i φ I V
mhpfval.r φ R W
Assertion mhpfval φ H = n 0 f B | f supp 0 ˙ g D | fld 𝑠 0 g = n

Proof

Step Hyp Ref Expression
1 mhpfval.h H = I mHomP R
2 mhpfval.p P = I mPoly R
3 mhpfval.b B = Base P
4 mhpfval.0 0 ˙ = 0 R
5 mhpfval.d D = h 0 I | h -1 Fin
6 mhpfval.i φ I V
7 mhpfval.r φ R W
8 6 elexd φ I V
9 7 elexd φ R V
10 oveq12 i = I r = R i mPoly r = I mPoly R
11 10 2 eqtr4di i = I r = R i mPoly r = P
12 11 fveq2d i = I r = R Base i mPoly r = Base P
13 12 3 eqtr4di i = I r = R Base i mPoly r = B
14 fveq2 r = R 0 r = 0 R
15 14 4 eqtr4di r = R 0 r = 0 ˙
16 15 oveq2d r = R f supp 0 r = f supp 0 ˙
17 16 adantl i = I r = R f supp 0 r = f supp 0 ˙
18 oveq2 i = I 0 i = 0 I
19 18 rabeqdv i = I h 0 i | h -1 Fin = h 0 I | h -1 Fin
20 19 5 eqtr4di i = I h 0 i | h -1 Fin = D
21 20 rabeqdv i = I g h 0 i | h -1 Fin | fld 𝑠 0 g = n = g D | fld 𝑠 0 g = n
22 21 adantr i = I r = R g h 0 i | h -1 Fin | fld 𝑠 0 g = n = g D | fld 𝑠 0 g = n
23 17 22 sseq12d i = I r = R f supp 0 r g h 0 i | h -1 Fin | fld 𝑠 0 g = n f supp 0 ˙ g D | fld 𝑠 0 g = n
24 13 23 rabeqbidv i = I r = R f Base i mPoly r | f supp 0 r g h 0 i | h -1 Fin | fld 𝑠 0 g = n = f B | f supp 0 ˙ g D | fld 𝑠 0 g = n
25 24 mpteq2dv i = I r = R n 0 f Base i mPoly r | f supp 0 r g h 0 i | h -1 Fin | fld 𝑠 0 g = n = n 0 f B | f supp 0 ˙ g D | fld 𝑠 0 g = n
26 df-mhp mHomP = i V , r V n 0 f Base i mPoly r | f supp 0 r g h 0 i | h -1 Fin | fld 𝑠 0 g = n
27 nn0ex 0 V
28 27 mptex n 0 f B | f supp 0 ˙ g D | fld 𝑠 0 g = n V
29 25 26 28 ovmpoa I V R V I mHomP R = n 0 f B | f supp 0 ˙ g D | fld 𝑠 0 g = n
30 8 9 29 syl2anc φ I mHomP R = n 0 f B | f supp 0 ˙ g D | fld 𝑠 0 g = n
31 1 30 eqtrid φ H = n 0 f B | f supp 0 ˙ g D | fld 𝑠 0 g = n