Metamath Proof Explorer


Theorem mhpfval

Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpfval.h H=ImHomPR
mhpfval.p P=ImPolyR
mhpfval.b B=BaseP
mhpfval.0 0˙=0R
mhpfval.d D=h0I|h-1Fin
mhpfval.i φIV
mhpfval.r φRW
Assertion mhpfval φH=n0fB|fsupp0˙gD|fld𝑠0g=n

Proof

Step Hyp Ref Expression
1 mhpfval.h H=ImHomPR
2 mhpfval.p P=ImPolyR
3 mhpfval.b B=BaseP
4 mhpfval.0 0˙=0R
5 mhpfval.d D=h0I|h-1Fin
6 mhpfval.i φIV
7 mhpfval.r φRW
8 6 elexd φIV
9 7 elexd φRV
10 oveq12 i=Ir=RimPolyr=ImPolyR
11 10 2 eqtr4di i=Ir=RimPolyr=P
12 11 fveq2d i=Ir=RBaseimPolyr=BaseP
13 12 3 eqtr4di i=Ir=RBaseimPolyr=B
14 fveq2 r=R0r=0R
15 14 4 eqtr4di r=R0r=0˙
16 15 oveq2d r=Rfsupp0r=fsupp0˙
17 16 adantl i=Ir=Rfsupp0r=fsupp0˙
18 oveq2 i=I0i=0I
19 18 rabeqdv i=Ih0i|h-1Fin=h0I|h-1Fin
20 19 5 eqtr4di i=Ih0i|h-1Fin=D
21 20 rabeqdv i=Igh0i|h-1Fin|fld𝑠0g=n=gD|fld𝑠0g=n
22 21 adantr i=Ir=Rgh0i|h-1Fin|fld𝑠0g=n=gD|fld𝑠0g=n
23 17 22 sseq12d i=Ir=Rfsupp0rgh0i|h-1Fin|fld𝑠0g=nfsupp0˙gD|fld𝑠0g=n
24 13 23 rabeqbidv i=Ir=RfBaseimPolyr|fsupp0rgh0i|h-1Fin|fld𝑠0g=n=fB|fsupp0˙gD|fld𝑠0g=n
25 24 mpteq2dv i=Ir=Rn0fBaseimPolyr|fsupp0rgh0i|h-1Fin|fld𝑠0g=n=n0fB|fsupp0˙gD|fld𝑠0g=n
26 df-mhp mHomP=iV,rVn0fBaseimPolyr|fsupp0rgh0i|h-1Fin|fld𝑠0g=n
27 nn0ex 0V
28 27 mptex n0fB|fsupp0˙gD|fld𝑠0g=nV
29 25 26 28 ovmpoa IVRVImHomPR=n0fB|fsupp0˙gD|fld𝑠0g=n
30 8 9 29 syl2anc φImHomPR=n0fB|fsupp0˙gD|fld𝑠0g=n
31 1 30 eqtrid φH=n0fB|fsupp0˙gD|fld𝑠0g=n