Metamath Proof Explorer


Definition df-mhp

Description: Define the subspaces of order- n homogeneous polynomials. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion df-mhp mHomP=iV,rVn0fBaseimPolyr|fsupp0rgh0i|h-1Fin|fld𝑠0g=n

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmhp classmHomP
1 vi setvari
2 cvv classV
3 vr setvarr
4 vn setvarn
5 cn0 class0
6 vf setvarf
7 cbs classBase
8 1 cv setvari
9 cmpl classmPoly
10 3 cv setvarr
11 8 10 9 co classimPolyr
12 11 7 cfv classBaseimPolyr
13 6 cv setvarf
14 csupp classsupp
15 c0g class0𝑔
16 10 15 cfv class0r
17 13 16 14 co classsupp0rf
18 vg setvarg
19 vh setvarh
20 cmap class𝑚
21 5 8 20 co class0i
22 19 cv setvarh
23 22 ccnv classh-1
24 cn class
25 23 24 cima classh-1
26 cfn classFin
27 25 26 wcel wffh-1Fin
28 27 19 21 crab classh0i|h-1Fin
29 ccnfld classfld
30 cress class𝑠
31 29 5 30 co classfld𝑠0
32 cgsu classΣ𝑔
33 18 cv setvarg
34 31 33 32 co classfld𝑠0g
35 4 cv setvarn
36 34 35 wceq wfffld𝑠0g=n
37 36 18 28 crab classgh0i|h-1Fin|fld𝑠0g=n
38 17 37 wss wfffsupp0rgh0i|h-1Fin|fld𝑠0g=n
39 38 6 12 crab classfBaseimPolyr|fsupp0rgh0i|h-1Fin|fld𝑠0g=n
40 4 5 39 cmpt classn0fBaseimPolyr|fsupp0rgh0i|h-1Fin|fld𝑠0g=n
41 1 3 2 2 40 cmpo classiV,rVn0fBaseimPolyr|fsupp0rgh0i|h-1Fin|fld𝑠0g=n
42 0 41 wceq wffmHomP=iV,rVn0fBaseimPolyr|fsupp0rgh0i|h-1Fin|fld𝑠0g=n