Metamath Proof Explorer


Definition df-mhp

Description: Define the subspaces of order- n homogeneous polynomials. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion df-mhp mHomP = i V , r V n 0 f Base i mPoly r | f supp 0 r g h 0 i | h -1 Fin | fld 𝑠 0 g = n

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmhp class mHomP
1 vi setvar i
2 cvv class V
3 vr setvar r
4 vn setvar n
5 cn0 class 0
6 vf setvar f
7 cbs class Base
8 1 cv setvar i
9 cmpl class mPoly
10 3 cv setvar r
11 8 10 9 co class i mPoly r
12 11 7 cfv class Base i mPoly r
13 6 cv setvar f
14 csupp class supp
15 c0g class 0 𝑔
16 10 15 cfv class 0 r
17 13 16 14 co class supp 0 r f
18 vg setvar g
19 vh setvar h
20 cmap class 𝑚
21 5 8 20 co class 0 i
22 19 cv setvar h
23 22 ccnv class h -1
24 cn class
25 23 24 cima class h -1
26 cfn class Fin
27 25 26 wcel wff h -1 Fin
28 27 19 21 crab class h 0 i | h -1 Fin
29 ccnfld class fld
30 cress class 𝑠
31 29 5 30 co class fld 𝑠 0
32 cgsu class Σ𝑔
33 18 cv setvar g
34 31 33 32 co class fld 𝑠 0 g
35 4 cv setvar n
36 34 35 wceq wff fld 𝑠 0 g = n
37 36 18 28 crab class g h 0 i | h -1 Fin | fld 𝑠 0 g = n
38 17 37 wss wff f supp 0 r g h 0 i | h -1 Fin | fld 𝑠 0 g = n
39 38 6 12 crab class f Base i mPoly r | f supp 0 r g h 0 i | h -1 Fin | fld 𝑠 0 g = n
40 4 5 39 cmpt class n 0 f Base i mPoly r | f supp 0 r g h 0 i | h -1 Fin | fld 𝑠 0 g = n
41 1 3 2 2 40 cmpo class i V , r V n 0 f Base i mPoly r | f supp 0 r g h 0 i | h -1 Fin | fld 𝑠 0 g = n
42 0 41 wceq wff mHomP = i V , r V n 0 f Base i mPoly r | f supp 0 r g h 0 i | h -1 Fin | fld 𝑠 0 g = n