Step |
Hyp |
Ref |
Expression |
0 |
|
cmhp |
|- mHomP |
1 |
|
vi |
|- i |
2 |
|
cvv |
|- _V |
3 |
|
vr |
|- r |
4 |
|
vn |
|- n |
5 |
|
cn0 |
|- NN0 |
6 |
|
vf |
|- f |
7 |
|
cbs |
|- Base |
8 |
1
|
cv |
|- i |
9 |
|
cmpl |
|- mPoly |
10 |
3
|
cv |
|- r |
11 |
8 10 9
|
co |
|- ( i mPoly r ) |
12 |
11 7
|
cfv |
|- ( Base ` ( i mPoly r ) ) |
13 |
6
|
cv |
|- f |
14 |
|
csupp |
|- supp |
15 |
|
c0g |
|- 0g |
16 |
10 15
|
cfv |
|- ( 0g ` r ) |
17 |
13 16 14
|
co |
|- ( f supp ( 0g ` r ) ) |
18 |
|
vg |
|- g |
19 |
|
vh |
|- h |
20 |
|
cmap |
|- ^m |
21 |
5 8 20
|
co |
|- ( NN0 ^m i ) |
22 |
19
|
cv |
|- h |
23 |
22
|
ccnv |
|- `' h |
24 |
|
cn |
|- NN |
25 |
23 24
|
cima |
|- ( `' h " NN ) |
26 |
|
cfn |
|- Fin |
27 |
25 26
|
wcel |
|- ( `' h " NN ) e. Fin |
28 |
27 19 21
|
crab |
|- { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |
29 |
|
ccnfld |
|- CCfld |
30 |
|
cress |
|- |`s |
31 |
29 5 30
|
co |
|- ( CCfld |`s NN0 ) |
32 |
|
cgsu |
|- gsum |
33 |
18
|
cv |
|- g |
34 |
31 33 32
|
co |
|- ( ( CCfld |`s NN0 ) gsum g ) |
35 |
4
|
cv |
|- n |
36 |
34 35
|
wceq |
|- ( ( CCfld |`s NN0 ) gsum g ) = n |
37 |
36 18 28
|
crab |
|- { g e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } |
38 |
17 37
|
wss |
|- ( f supp ( 0g ` r ) ) C_ { g e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } |
39 |
38 6 12
|
crab |
|- { f e. ( Base ` ( i mPoly r ) ) | ( f supp ( 0g ` r ) ) C_ { g e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } |
40 |
4 5 39
|
cmpt |
|- ( n e. NN0 |-> { f e. ( Base ` ( i mPoly r ) ) | ( f supp ( 0g ` r ) ) C_ { g e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) |
41 |
1 3 2 2 40
|
cmpo |
|- ( i e. _V , r e. _V |-> ( n e. NN0 |-> { f e. ( Base ` ( i mPoly r ) ) | ( f supp ( 0g ` r ) ) C_ { g e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) ) |
42 |
0 41
|
wceq |
|- mHomP = ( i e. _V , r e. _V |-> ( n e. NN0 |-> { f e. ( Base ` ( i mPoly r ) ) | ( f supp ( 0g ` r ) ) C_ { g e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = n } } ) ) |