| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpsd |  |-  mPSDer | 
						
							| 1 |  | vi |  |-  i | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vr |  |-  r | 
						
							| 4 |  | vx |  |-  x | 
						
							| 5 | 1 | cv |  |-  i | 
						
							| 6 |  | vf |  |-  f | 
						
							| 7 |  | cbs |  |-  Base | 
						
							| 8 |  | cmps |  |-  mPwSer | 
						
							| 9 | 3 | cv |  |-  r | 
						
							| 10 | 5 9 8 | co |  |-  ( i mPwSer r ) | 
						
							| 11 | 10 7 | cfv |  |-  ( Base ` ( i mPwSer r ) ) | 
						
							| 12 |  | vk |  |-  k | 
						
							| 13 |  | vh |  |-  h | 
						
							| 14 |  | cn0 |  |-  NN0 | 
						
							| 15 |  | cmap |  |-  ^m | 
						
							| 16 | 14 5 15 | co |  |-  ( NN0 ^m i ) | 
						
							| 17 | 13 | cv |  |-  h | 
						
							| 18 | 17 | ccnv |  |-  `' h | 
						
							| 19 |  | cn |  |-  NN | 
						
							| 20 | 18 19 | cima |  |-  ( `' h " NN ) | 
						
							| 21 |  | cfn |  |-  Fin | 
						
							| 22 | 20 21 | wcel |  |-  ( `' h " NN ) e. Fin | 
						
							| 23 | 22 13 16 | crab |  |-  { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } | 
						
							| 24 | 12 | cv |  |-  k | 
						
							| 25 | 4 | cv |  |-  x | 
						
							| 26 | 25 24 | cfv |  |-  ( k ` x ) | 
						
							| 27 |  | caddc |  |-  + | 
						
							| 28 |  | c1 |  |-  1 | 
						
							| 29 | 26 28 27 | co |  |-  ( ( k ` x ) + 1 ) | 
						
							| 30 |  | cmg |  |-  .g | 
						
							| 31 | 9 30 | cfv |  |-  ( .g ` r ) | 
						
							| 32 | 6 | cv |  |-  f | 
						
							| 33 | 27 | cof |  |-  oF + | 
						
							| 34 |  | vy |  |-  y | 
						
							| 35 | 34 | cv |  |-  y | 
						
							| 36 | 35 25 | wceq |  |-  y = x | 
						
							| 37 |  | cc0 |  |-  0 | 
						
							| 38 | 36 28 37 | cif |  |-  if ( y = x , 1 , 0 ) | 
						
							| 39 | 34 5 38 | cmpt |  |-  ( y e. i |-> if ( y = x , 1 , 0 ) ) | 
						
							| 40 | 24 39 33 | co |  |-  ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) | 
						
							| 41 | 40 32 | cfv |  |-  ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) | 
						
							| 42 | 29 41 31 | co |  |-  ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) | 
						
							| 43 | 12 23 42 | cmpt |  |-  ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) | 
						
							| 44 | 6 11 43 | cmpt |  |-  ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) | 
						
							| 45 | 4 5 44 | cmpt |  |-  ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) | 
						
							| 46 | 1 3 2 2 45 | cmpo |  |-  ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) | 
						
							| 47 | 0 46 | wceq |  |-  mPSDer = ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) |