Step |
Hyp |
Ref |
Expression |
0 |
|
cpsd |
|- mPSDer |
1 |
|
vi |
|- i |
2 |
|
cvv |
|- _V |
3 |
|
vr |
|- r |
4 |
|
vx |
|- x |
5 |
1
|
cv |
|- i |
6 |
|
vf |
|- f |
7 |
|
cbs |
|- Base |
8 |
|
cmps |
|- mPwSer |
9 |
3
|
cv |
|- r |
10 |
5 9 8
|
co |
|- ( i mPwSer r ) |
11 |
10 7
|
cfv |
|- ( Base ` ( i mPwSer r ) ) |
12 |
|
vk |
|- k |
13 |
|
vh |
|- h |
14 |
|
cn0 |
|- NN0 |
15 |
|
cmap |
|- ^m |
16 |
14 5 15
|
co |
|- ( NN0 ^m i ) |
17 |
13
|
cv |
|- h |
18 |
17
|
ccnv |
|- `' h |
19 |
|
cn |
|- NN |
20 |
18 19
|
cima |
|- ( `' h " NN ) |
21 |
|
cfn |
|- Fin |
22 |
20 21
|
wcel |
|- ( `' h " NN ) e. Fin |
23 |
22 13 16
|
crab |
|- { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |
24 |
12
|
cv |
|- k |
25 |
4
|
cv |
|- x |
26 |
25 24
|
cfv |
|- ( k ` x ) |
27 |
|
caddc |
|- + |
28 |
|
c1 |
|- 1 |
29 |
26 28 27
|
co |
|- ( ( k ` x ) + 1 ) |
30 |
|
cmg |
|- .g |
31 |
9 30
|
cfv |
|- ( .g ` r ) |
32 |
6
|
cv |
|- f |
33 |
27
|
cof |
|- oF + |
34 |
|
vy |
|- y |
35 |
34
|
cv |
|- y |
36 |
35 25
|
wceq |
|- y = x |
37 |
|
cc0 |
|- 0 |
38 |
36 28 37
|
cif |
|- if ( y = x , 1 , 0 ) |
39 |
34 5 38
|
cmpt |
|- ( y e. i |-> if ( y = x , 1 , 0 ) ) |
40 |
24 39 33
|
co |
|- ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) |
41 |
40 32
|
cfv |
|- ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) |
42 |
29 41 31
|
co |
|- ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) |
43 |
12 23 42
|
cmpt |
|- ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) |
44 |
6 11 43
|
cmpt |
|- ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) |
45 |
4 5 44
|
cmpt |
|- ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) |
46 |
1 3 2 2 45
|
cmpo |
|- ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) |
47 |
0 46
|
wceq |
|- mPSDer = ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. ( Base ` ( i mPwSer r ) ) |-> ( k e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> ( ( ( k ` x ) + 1 ) ( .g ` r ) ( f ` ( k oF + ( y e. i |-> if ( y = x , 1 , 0 ) ) ) ) ) ) ) ) ) |