Metamath Proof Explorer


Definition df-psd

Description: Define the differentiation operation on multivariate polynomials. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion df-psd mPSDer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑥 ) + 1 ) ( .g𝑟 ) ( 𝑓 ‘ ( 𝑘f + ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpsd mPSDer
1 vi 𝑖
2 cvv V
3 vr 𝑟
4 vx 𝑥
5 1 cv 𝑖
6 vf 𝑓
7 cbs Base
8 cmps mPwSer
9 3 cv 𝑟
10 5 9 8 co ( 𝑖 mPwSer 𝑟 )
11 10 7 cfv ( Base ‘ ( 𝑖 mPwSer 𝑟 ) )
12 vk 𝑘
13 vh
14 cn0 0
15 cmap m
16 14 5 15 co ( ℕ0m 𝑖 )
17 13 cv
18 17 ccnv
19 cn
20 18 19 cima ( “ ℕ )
21 cfn Fin
22 20 21 wcel ( “ ℕ ) ∈ Fin
23 22 13 16 crab { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin }
24 12 cv 𝑘
25 4 cv 𝑥
26 25 24 cfv ( 𝑘𝑥 )
27 caddc +
28 c1 1
29 26 28 27 co ( ( 𝑘𝑥 ) + 1 )
30 cmg .g
31 9 30 cfv ( .g𝑟 )
32 6 cv 𝑓
33 27 cof f +
34 vy 𝑦
35 34 cv 𝑦
36 35 25 wceq 𝑦 = 𝑥
37 cc0 0
38 36 28 37 cif if ( 𝑦 = 𝑥 , 1 , 0 )
39 34 5 38 cmpt ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) )
40 24 39 33 co ( 𝑘f + ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) )
41 40 32 cfv ( 𝑓 ‘ ( 𝑘f + ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) )
42 29 41 31 co ( ( ( 𝑘𝑥 ) + 1 ) ( .g𝑟 ) ( 𝑓 ‘ ( 𝑘f + ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) )
43 12 23 42 cmpt ( 𝑘 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑥 ) + 1 ) ( .g𝑟 ) ( 𝑓 ‘ ( 𝑘f + ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) )
44 6 11 43 cmpt ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑥 ) + 1 ) ( .g𝑟 ) ( 𝑓 ‘ ( 𝑘f + ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) )
45 4 5 44 cmpt ( 𝑥𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑥 ) + 1 ) ( .g𝑟 ) ( 𝑓 ‘ ( 𝑘f + ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) )
46 1 3 2 2 45 cmpo ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑥 ) + 1 ) ( .g𝑟 ) ( 𝑓 ‘ ( 𝑘f + ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) )
47 0 46 wceq mPSDer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘𝑥 ) + 1 ) ( .g𝑟 ) ( 𝑓 ‘ ( 𝑘f + ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) )