Step |
Hyp |
Ref |
Expression |
0 |
|
cpsd |
⊢ mPSDer |
1 |
|
vi |
⊢ 𝑖 |
2 |
|
cvv |
⊢ V |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
vx |
⊢ 𝑥 |
5 |
1
|
cv |
⊢ 𝑖 |
6 |
|
vf |
⊢ 𝑓 |
7 |
|
cbs |
⊢ Base |
8 |
|
cmps |
⊢ mPwSer |
9 |
3
|
cv |
⊢ 𝑟 |
10 |
5 9 8
|
co |
⊢ ( 𝑖 mPwSer 𝑟 ) |
11 |
10 7
|
cfv |
⊢ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) |
12 |
|
vk |
⊢ 𝑘 |
13 |
|
vh |
⊢ ℎ |
14 |
|
cn0 |
⊢ ℕ0 |
15 |
|
cmap |
⊢ ↑m |
16 |
14 5 15
|
co |
⊢ ( ℕ0 ↑m 𝑖 ) |
17 |
13
|
cv |
⊢ ℎ |
18 |
17
|
ccnv |
⊢ ◡ ℎ |
19 |
|
cn |
⊢ ℕ |
20 |
18 19
|
cima |
⊢ ( ◡ ℎ “ ℕ ) |
21 |
|
cfn |
⊢ Fin |
22 |
20 21
|
wcel |
⊢ ( ◡ ℎ “ ℕ ) ∈ Fin |
23 |
22 13 16
|
crab |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
24 |
12
|
cv |
⊢ 𝑘 |
25 |
4
|
cv |
⊢ 𝑥 |
26 |
25 24
|
cfv |
⊢ ( 𝑘 ‘ 𝑥 ) |
27 |
|
caddc |
⊢ + |
28 |
|
c1 |
⊢ 1 |
29 |
26 28 27
|
co |
⊢ ( ( 𝑘 ‘ 𝑥 ) + 1 ) |
30 |
|
cmg |
⊢ .g |
31 |
9 30
|
cfv |
⊢ ( .g ‘ 𝑟 ) |
32 |
6
|
cv |
⊢ 𝑓 |
33 |
27
|
cof |
⊢ ∘f + |
34 |
|
vy |
⊢ 𝑦 |
35 |
34
|
cv |
⊢ 𝑦 |
36 |
35 25
|
wceq |
⊢ 𝑦 = 𝑥 |
37 |
|
cc0 |
⊢ 0 |
38 |
36 28 37
|
cif |
⊢ if ( 𝑦 = 𝑥 , 1 , 0 ) |
39 |
34 5 38
|
cmpt |
⊢ ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) |
40 |
24 39 33
|
co |
⊢ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) |
41 |
40 32
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) |
42 |
29 41 31
|
co |
⊢ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) |
43 |
12 23 42
|
cmpt |
⊢ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) |
44 |
6 11 43
|
cmpt |
⊢ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) |
45 |
4 5 44
|
cmpt |
⊢ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) |
46 |
1 3 2 2 45
|
cmpo |
⊢ ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) ) |
47 |
0 46
|
wceq |
⊢ mPSDer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ ( Base ‘ ( 𝑖 mPwSer 𝑟 ) ) ↦ ( 𝑘 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( ( 𝑘 ‘ 𝑥 ) + 1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘 ∘f + ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) ) ) ) ) ) |