| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpsd | ⊢  mPSDer | 
						
							| 1 |  | vi | ⊢ 𝑖 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vr | ⊢ 𝑟 | 
						
							| 4 |  | vx | ⊢ 𝑥 | 
						
							| 5 | 1 | cv | ⊢ 𝑖 | 
						
							| 6 |  | vf | ⊢ 𝑓 | 
						
							| 7 |  | cbs | ⊢ Base | 
						
							| 8 |  | cmps | ⊢  mPwSer | 
						
							| 9 | 3 | cv | ⊢ 𝑟 | 
						
							| 10 | 5 9 8 | co | ⊢ ( 𝑖  mPwSer  𝑟 ) | 
						
							| 11 | 10 7 | cfv | ⊢ ( Base ‘ ( 𝑖  mPwSer  𝑟 ) ) | 
						
							| 12 |  | vk | ⊢ 𝑘 | 
						
							| 13 |  | vh | ⊢ ℎ | 
						
							| 14 |  | cn0 | ⊢ ℕ0 | 
						
							| 15 |  | cmap | ⊢  ↑m | 
						
							| 16 | 14 5 15 | co | ⊢ ( ℕ0  ↑m  𝑖 ) | 
						
							| 17 | 13 | cv | ⊢ ℎ | 
						
							| 18 | 17 | ccnv | ⊢ ◡ ℎ | 
						
							| 19 |  | cn | ⊢ ℕ | 
						
							| 20 | 18 19 | cima | ⊢ ( ◡ ℎ  “  ℕ ) | 
						
							| 21 |  | cfn | ⊢ Fin | 
						
							| 22 | 20 21 | wcel | ⊢ ( ◡ ℎ  “  ℕ )  ∈  Fin | 
						
							| 23 | 22 13 16 | crab | ⊢ { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin } | 
						
							| 24 | 12 | cv | ⊢ 𝑘 | 
						
							| 25 | 4 | cv | ⊢ 𝑥 | 
						
							| 26 | 25 24 | cfv | ⊢ ( 𝑘 ‘ 𝑥 ) | 
						
							| 27 |  | caddc | ⊢  + | 
						
							| 28 |  | c1 | ⊢ 1 | 
						
							| 29 | 26 28 27 | co | ⊢ ( ( 𝑘 ‘ 𝑥 )  +  1 ) | 
						
							| 30 |  | cmg | ⊢ .g | 
						
							| 31 | 9 30 | cfv | ⊢ ( .g ‘ 𝑟 ) | 
						
							| 32 | 6 | cv | ⊢ 𝑓 | 
						
							| 33 | 27 | cof | ⊢  ∘f   + | 
						
							| 34 |  | vy | ⊢ 𝑦 | 
						
							| 35 | 34 | cv | ⊢ 𝑦 | 
						
							| 36 | 35 25 | wceq | ⊢ 𝑦  =  𝑥 | 
						
							| 37 |  | cc0 | ⊢ 0 | 
						
							| 38 | 36 28 37 | cif | ⊢ if ( 𝑦  =  𝑥 ,  1 ,  0 ) | 
						
							| 39 | 34 5 38 | cmpt | ⊢ ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) | 
						
							| 40 | 24 39 33 | co | ⊢ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) | 
						
							| 41 | 40 32 | cfv | ⊢ ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) | 
						
							| 42 | 29 41 31 | co | ⊢ ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) | 
						
							| 43 | 12 23 42 | cmpt | ⊢ ( 𝑘  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) | 
						
							| 44 | 6 11 43 | cmpt | ⊢ ( 𝑓  ∈  ( Base ‘ ( 𝑖  mPwSer  𝑟 ) )  ↦  ( 𝑘  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) | 
						
							| 45 | 4 5 44 | cmpt | ⊢ ( 𝑥  ∈  𝑖  ↦  ( 𝑓  ∈  ( Base ‘ ( 𝑖  mPwSer  𝑟 ) )  ↦  ( 𝑘  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) ) | 
						
							| 46 | 1 3 2 2 45 | cmpo | ⊢ ( 𝑖  ∈  V ,  𝑟  ∈  V  ↦  ( 𝑥  ∈  𝑖  ↦  ( 𝑓  ∈  ( Base ‘ ( 𝑖  mPwSer  𝑟 ) )  ↦  ( 𝑘  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) ) ) | 
						
							| 47 | 0 46 | wceq | ⊢  mPSDer   =  ( 𝑖  ∈  V ,  𝑟  ∈  V  ↦  ( 𝑥  ∈  𝑖  ↦  ( 𝑓  ∈  ( Base ‘ ( 𝑖  mPwSer  𝑟 ) )  ↦  ( 𝑘  ∈  { ℎ  ∈  ( ℕ0  ↑m  𝑖 )  ∣  ( ◡ ℎ  “  ℕ )  ∈  Fin }  ↦  ( ( ( 𝑘 ‘ 𝑥 )  +  1 ) ( .g ‘ 𝑟 ) ( 𝑓 ‘ ( 𝑘  ∘f   +  ( 𝑦  ∈  𝑖  ↦  if ( 𝑦  =  𝑥 ,  1 ,  0 ) ) ) ) ) ) ) ) ) |