Metamath Proof Explorer


Definition df-psd

Description: Define the differentiation operation on multivariate polynomials. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion df-psd mPSDer = i V , r V x i f Base i mPwSer r k h 0 i | h -1 Fin k x + 1 r f k + f y i if y = x 1 0

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpsd class mPSDer
1 vi setvar i
2 cvv class V
3 vr setvar r
4 vx setvar x
5 1 cv setvar i
6 vf setvar f
7 cbs class Base
8 cmps class mPwSer
9 3 cv setvar r
10 5 9 8 co class i mPwSer r
11 10 7 cfv class Base i mPwSer r
12 vk setvar k
13 vh setvar h
14 cn0 class 0
15 cmap class 𝑚
16 14 5 15 co class 0 i
17 13 cv setvar h
18 17 ccnv class h -1
19 cn class
20 18 19 cima class h -1
21 cfn class Fin
22 20 21 wcel wff h -1 Fin
23 22 13 16 crab class h 0 i | h -1 Fin
24 12 cv setvar k
25 4 cv setvar x
26 25 24 cfv class k x
27 caddc class +
28 c1 class 1
29 26 28 27 co class k x + 1
30 cmg class 𝑔
31 9 30 cfv class r
32 6 cv setvar f
33 27 cof class f +
34 vy setvar y
35 34 cv setvar y
36 35 25 wceq wff y = x
37 cc0 class 0
38 36 28 37 cif class if y = x 1 0
39 34 5 38 cmpt class y i if y = x 1 0
40 24 39 33 co class k + f y i if y = x 1 0
41 40 32 cfv class f k + f y i if y = x 1 0
42 29 41 31 co class k x + 1 r f k + f y i if y = x 1 0
43 12 23 42 cmpt class k h 0 i | h -1 Fin k x + 1 r f k + f y i if y = x 1 0
44 6 11 43 cmpt class f Base i mPwSer r k h 0 i | h -1 Fin k x + 1 r f k + f y i if y = x 1 0
45 4 5 44 cmpt class x i f Base i mPwSer r k h 0 i | h -1 Fin k x + 1 r f k + f y i if y = x 1 0
46 1 3 2 2 45 cmpo class i V , r V x i f Base i mPwSer r k h 0 i | h -1 Fin k x + 1 r f k + f y i if y = x 1 0
47 0 46 wceq wff mPSDer = i V , r V x i f Base i mPwSer r k h 0 i | h -1 Fin k x + 1 r f k + f y i if y = x 1 0