Step |
Hyp |
Ref |
Expression |
0 |
|
cmhp |
⊢ mHomP |
1 |
|
vi |
⊢ 𝑖 |
2 |
|
cvv |
⊢ V |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
vn |
⊢ 𝑛 |
5 |
|
cn0 |
⊢ ℕ0 |
6 |
|
vf |
⊢ 𝑓 |
7 |
|
cbs |
⊢ Base |
8 |
1
|
cv |
⊢ 𝑖 |
9 |
|
cmpl |
⊢ mPoly |
10 |
3
|
cv |
⊢ 𝑟 |
11 |
8 10 9
|
co |
⊢ ( 𝑖 mPoly 𝑟 ) |
12 |
11 7
|
cfv |
⊢ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) |
13 |
6
|
cv |
⊢ 𝑓 |
14 |
|
csupp |
⊢ supp |
15 |
|
c0g |
⊢ 0g |
16 |
10 15
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
17 |
13 16 14
|
co |
⊢ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) |
18 |
|
vg |
⊢ 𝑔 |
19 |
|
vh |
⊢ ℎ |
20 |
|
cmap |
⊢ ↑m |
21 |
5 8 20
|
co |
⊢ ( ℕ0 ↑m 𝑖 ) |
22 |
19
|
cv |
⊢ ℎ |
23 |
22
|
ccnv |
⊢ ◡ ℎ |
24 |
|
cn |
⊢ ℕ |
25 |
23 24
|
cima |
⊢ ( ◡ ℎ “ ℕ ) |
26 |
|
cfn |
⊢ Fin |
27 |
25 26
|
wcel |
⊢ ( ◡ ℎ “ ℕ ) ∈ Fin |
28 |
27 19 21
|
crab |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
29 |
|
ccnfld |
⊢ ℂfld |
30 |
|
cress |
⊢ ↾s |
31 |
29 5 30
|
co |
⊢ ( ℂfld ↾s ℕ0 ) |
32 |
|
cgsu |
⊢ Σg |
33 |
18
|
cv |
⊢ 𝑔 |
34 |
31 33 32
|
co |
⊢ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) |
35 |
4
|
cv |
⊢ 𝑛 |
36 |
34 35
|
wceq |
⊢ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 |
37 |
36 18 28
|
crab |
⊢ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } |
38 |
17 37
|
wss |
⊢ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } |
39 |
38 6 12
|
crab |
⊢ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } |
40 |
4 5 39
|
cmpt |
⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) |
41 |
1 3 2 2 40
|
cmpo |
⊢ ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ) |
42 |
0 41
|
wceq |
⊢ mHomP = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g ‘ 𝑟 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ) |