Metamath Proof Explorer


Definition df-mhp

Description: Define the subspaces of order- n homogeneous polynomials. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion df-mhp mHomP = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g𝑟 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmhp mHomP
1 vi 𝑖
2 cvv V
3 vr 𝑟
4 vn 𝑛
5 cn0 0
6 vf 𝑓
7 cbs Base
8 1 cv 𝑖
9 cmpl mPoly
10 3 cv 𝑟
11 8 10 9 co ( 𝑖 mPoly 𝑟 )
12 11 7 cfv ( Base ‘ ( 𝑖 mPoly 𝑟 ) )
13 6 cv 𝑓
14 csupp supp
15 c0g 0g
16 10 15 cfv ( 0g𝑟 )
17 13 16 14 co ( 𝑓 supp ( 0g𝑟 ) )
18 vg 𝑔
19 vh
20 cmap m
21 5 8 20 co ( ℕ0m 𝑖 )
22 19 cv
23 22 ccnv
24 cn
25 23 24 cima ( “ ℕ )
26 cfn Fin
27 25 26 wcel ( “ ℕ ) ∈ Fin
28 27 19 21 crab { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin }
29 ccnfld fld
30 cress s
31 29 5 30 co ( ℂflds0 )
32 cgsu Σg
33 18 cv 𝑔
34 31 33 32 co ( ( ℂflds0 ) Σg 𝑔 )
35 4 cv 𝑛
36 34 35 wceq ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛
37 36 18 28 crab { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 }
38 17 37 wss ( 𝑓 supp ( 0g𝑟 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 }
39 38 6 12 crab { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g𝑟 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } }
40 4 5 39 cmpt ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g𝑟 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } )
41 1 3 2 2 40 cmpo ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g𝑟 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) )
42 0 41 wceq mHomP = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( Base ‘ ( 𝑖 mPoly 𝑟 ) ) ∣ ( 𝑓 supp ( 0g𝑟 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) )