Metamath Proof Explorer


Theorem mhpval

Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpfval.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhpfval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mhpfval.b 𝐵 = ( Base ‘ 𝑃 )
mhpfval.0 0 = ( 0g𝑅 )
mhpfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
mhpfval.i ( 𝜑𝐼𝑉 )
mhpfval.r ( 𝜑𝑅𝑊 )
mhpval.n ( 𝜑𝑁 ∈ ℕ0 )
Assertion mhpval ( 𝜑 → ( 𝐻𝑁 ) = { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } } )

Proof

Step Hyp Ref Expression
1 mhpfval.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhpfval.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mhpfval.b 𝐵 = ( Base ‘ 𝑃 )
4 mhpfval.0 0 = ( 0g𝑅 )
5 mhpfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
6 mhpfval.i ( 𝜑𝐼𝑉 )
7 mhpfval.r ( 𝜑𝑅𝑊 )
8 mhpval.n ( 𝜑𝑁 ∈ ℕ0 )
9 1 2 3 4 5 6 7 mhpfval ( 𝜑𝐻 = ( 𝑛 ∈ ℕ0 ↦ { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } ) )
10 eqeq2 ( 𝑛 = 𝑁 → ( ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 ↔ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 ) )
11 10 rabbidv ( 𝑛 = 𝑁 → { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } = { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } )
12 11 sseq2d ( 𝑛 = 𝑁 → ( ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } ↔ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) )
13 12 rabbidv ( 𝑛 = 𝑁 → { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } = { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } } )
14 13 adantl ( ( 𝜑𝑛 = 𝑁 ) → { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑛 } } = { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } } )
15 3 fvexi 𝐵 ∈ V
16 15 rabex { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } } ∈ V
17 16 a1i ( 𝜑 → { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } } ∈ V )
18 9 14 8 17 fvmptd ( 𝜑 → ( 𝐻𝑁 ) = { 𝑓𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔𝐷 ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } } )