Step |
Hyp |
Ref |
Expression |
1 |
|
mhpfval.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhpfval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mhpfval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
mhpfval.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mhpfval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
6 |
|
mhpfval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
7 |
|
mhpfval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
8 |
|
mhpval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
9 |
1 2 3 4 5 6 7
|
mhpfval |
⊢ ( 𝜑 → 𝐻 = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } ) ) |
10 |
|
eqeq2 |
⊢ ( 𝑛 = 𝑁 → ( ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 ↔ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 ) ) |
11 |
10
|
rabbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } = { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) |
12 |
11
|
sseq2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } ↔ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ) |
13 |
12
|
rabbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } = { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } } ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑁 ) → { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑛 } } = { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } } ) |
15 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
16 |
15
|
rabex |
⊢ { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } } ∈ V |
17 |
16
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } } ∈ V ) |
18 |
9 14 8 17
|
fvmptd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) = { 𝑓 ∈ 𝐵 ∣ ( 𝑓 supp 0 ) ⊆ { 𝑔 ∈ 𝐷 ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } } ) |