Step |
Hyp |
Ref |
Expression |
1 |
|
mhpmpl.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑅 ) |
2 |
|
mhpmpl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mhpmpl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
mhpmpl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
5 |
|
mhpmpl.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
6 |
|
mhpmpl.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
7 |
|
mhpmpl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
9 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
10 |
1 2 3 8 9 4 5 6
|
ismhp |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑋 supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ) ) |
11 |
10
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑋 ∈ 𝐵 ) |
12 |
7 11
|
mpdan |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |