Metamath Proof Explorer


Theorem mhpmpl

Description: A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpmpl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhpmpl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mhpmpl.b 𝐵 = ( Base ‘ 𝑃 )
mhpmpl.x ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) )
Assertion mhpmpl ( 𝜑𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 mhpmpl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhpmpl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mhpmpl.b 𝐵 = ( Base ‘ 𝑃 )
4 mhpmpl.x ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) )
5 eqid ( 0g𝑅 ) = ( 0g𝑅 )
6 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
7 1 4 mhprcl ( 𝜑𝑁 ∈ ℕ0 )
8 1 2 3 5 6 7 ismhp ( 𝜑 → ( 𝑋 ∈ ( 𝐻𝑁 ) ↔ ( 𝑋𝐵 ∧ ( 𝑋 supp ( 0g𝑅 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) ) )
9 8 simprbda ( ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) ) → 𝑋𝐵 )
10 4 9 mpdan ( 𝜑𝑋𝐵 )