Metamath Proof Explorer


Theorem mhpmpl

Description: A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpmpl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
mhpmpl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mhpmpl.b 𝐵 = ( Base ‘ 𝑃 )
mhpmpl.i ( 𝜑𝐼𝑉 )
mhpmpl.r ( 𝜑𝑅𝑊 )
mhpmpl.n ( 𝜑𝑁 ∈ ℕ0 )
mhpmpl.x ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) )
Assertion mhpmpl ( 𝜑𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 mhpmpl.h 𝐻 = ( 𝐼 mHomP 𝑅 )
2 mhpmpl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mhpmpl.b 𝐵 = ( Base ‘ 𝑃 )
4 mhpmpl.i ( 𝜑𝐼𝑉 )
5 mhpmpl.r ( 𝜑𝑅𝑊 )
6 mhpmpl.n ( 𝜑𝑁 ∈ ℕ0 )
7 mhpmpl.x ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) )
8 eqid ( 0g𝑅 ) = ( 0g𝑅 )
9 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
10 1 2 3 8 9 4 5 6 ismhp ( 𝜑 → ( 𝑋 ∈ ( 𝐻𝑁 ) ↔ ( 𝑋𝐵 ∧ ( 𝑋 supp ( 0g𝑅 ) ) ⊆ { 𝑔 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ∣ ( ( ℂflds0 ) Σg 𝑔 ) = 𝑁 } ) ) )
11 10 simprbda ( ( 𝜑𝑋 ∈ ( 𝐻𝑁 ) ) → 𝑋𝐵 )
12 7 11 mpdan ( 𝜑𝑋𝐵 )