Description: A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mhpmpl.h | |- H = ( I mHomP R ) |
|
mhpmpl.p | |- P = ( I mPoly R ) |
||
mhpmpl.b | |- B = ( Base ` P ) |
||
mhpmpl.i | |- ( ph -> I e. V ) |
||
mhpmpl.r | |- ( ph -> R e. W ) |
||
mhpmpl.n | |- ( ph -> N e. NN0 ) |
||
mhpmpl.x | |- ( ph -> X e. ( H ` N ) ) |
||
Assertion | mhpmpl | |- ( ph -> X e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpmpl.h | |- H = ( I mHomP R ) |
|
2 | mhpmpl.p | |- P = ( I mPoly R ) |
|
3 | mhpmpl.b | |- B = ( Base ` P ) |
|
4 | mhpmpl.i | |- ( ph -> I e. V ) |
|
5 | mhpmpl.r | |- ( ph -> R e. W ) |
|
6 | mhpmpl.n | |- ( ph -> N e. NN0 ) |
|
7 | mhpmpl.x | |- ( ph -> X e. ( H ` N ) ) |
|
8 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
9 | eqid | |- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
10 | 1 2 3 8 9 4 5 6 | ismhp | |- ( ph -> ( X e. ( H ` N ) <-> ( X e. B /\ ( X supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) ) |
11 | 10 | simprbda | |- ( ( ph /\ X e. ( H ` N ) ) -> X e. B ) |
12 | 7 11 | mpdan | |- ( ph -> X e. B ) |