Metamath Proof Explorer


Theorem mhpmpl

Description: A homogeneous polynomial is a polynomial. (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpmpl.h
|- H = ( I mHomP R )
mhpmpl.p
|- P = ( I mPoly R )
mhpmpl.b
|- B = ( Base ` P )
mhpmpl.i
|- ( ph -> I e. V )
mhpmpl.r
|- ( ph -> R e. W )
mhpmpl.n
|- ( ph -> N e. NN0 )
mhpmpl.x
|- ( ph -> X e. ( H ` N ) )
Assertion mhpmpl
|- ( ph -> X e. B )

Proof

Step Hyp Ref Expression
1 mhpmpl.h
 |-  H = ( I mHomP R )
2 mhpmpl.p
 |-  P = ( I mPoly R )
3 mhpmpl.b
 |-  B = ( Base ` P )
4 mhpmpl.i
 |-  ( ph -> I e. V )
5 mhpmpl.r
 |-  ( ph -> R e. W )
6 mhpmpl.n
 |-  ( ph -> N e. NN0 )
7 mhpmpl.x
 |-  ( ph -> X e. ( H ` N ) )
8 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
9 eqid
 |-  { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
10 1 2 3 8 9 4 5 6 ismhp
 |-  ( ph -> ( X e. ( H ` N ) <-> ( X e. B /\ ( X supp ( 0g ` R ) ) C_ { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) ) )
11 10 simprbda
 |-  ( ( ph /\ X e. ( H ` N ) ) -> X e. B )
12 7 11 mpdan
 |-  ( ph -> X e. B )